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Hohenberg-Kohn theorem

• Let us consider all possible Schrödinger equation for Ne electrons which 
only differ by the external potential Vext (r):

Hohenberg and Kohn have demonstrated that the electronic density of 
the ground-state n(r) defined by:

determines uniquely the external potential Vext (r), modulo a global 
constant.

• The external potential is thus a functional of the density.
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Hohenberg-Kohn theorem

• It is also the case for all the quantities which can be formally obtained 
once the potential is fixed modulo a global constant
(for instance, the wavefunctions of the ground-state), hence the name of 
the theory (acronym: DFT).

• The total electronic energy is also a functional of the density:

Indeed, the Hamiltonian is uniquely defined by specifying the external 
potential, and its expectation value gives the total electronic energy.
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Hohenberg-Kohn theorem

• Starting from the variational principle, it is possible to gain insight 
about this energy functional:

where                                                is a universal functional of the

density, but it is not known explicitly.
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Kohn-Sham equations
• F [n ] represents an important part of the total energy. It is thus critical to 

make a reasonable approximation for it

• Kohn and Sham tried to establish a connection with a system of non-
interacting electrons in an effective potential Veff, whose ground-state 
density equals the one of the interacting system: 
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• Ansatz for Eeff:

E[n] = F[n] +

∫
n(r)Ve f f (r) dr = F + Ee f f

Ee f f [n] = Eext[n] + EH[n] + Exc[n]
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• For non-interacting particles, F reduces to the much simpler expression:
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Kohn-Sham equation

• The problem has now turned into minimizing the functional :

under constraint of a fixed number of electrons: 

• Introducing Lagrange multipliers, one has to solve:
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Kohn-Sham equation

• This equation is strictly equivalent to that of a system of non-interacting 
electrons with the same electronic density in an external potential, 
called Kohn-Sham potential:

where Vxc (r) is the exchange-correlation potential.

• It is thus also equivalent to solve the 1-electron Schrödinger equation: 

with the electronic density
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• However, there is a new difficulty:
‒ to obtain the potential VHxc (r), the electronic density n(r) and hence 

all the wavefunctions ϕi (r) are needed
‒ to obtain the wavefunctions ϕi (r), the potential VHxc (r) is required

• In practice, one starts from a trial electronic density and then iterates the 
equations until self-consistency is reached:

The self-consistent cycle
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• Let          be a set of vectors that span an appropriate Hilbert subspace

• The KS orbitals are expanded in this basis set using:

• The KS equation                        reduces to the solution of the 
generalized eigenvalue problem: 

Discretizing the KS equations

H|ψ〉 = ε|ψ〉

{bi}

Hc = εOc

Oi j = 〈bi|b j〉

|ψ〉 =
∑

i ci |bi〉 ci ≡ 〈bi|ψ〉with 

Overlap matrix

Vector of unknown coefficients

• The basis set should be
‒ accurate 
‒ efficient (small size and/or                  easy to compute) 〈bi|H|b j〉

Hi j = 〈bi|H|b j〉



Local Density Approximation

• Let us come back to the problem of finding a reasonable approximation 
for the exchange-correlation energy functional.

• It is possible to show that this functional of the density can be written as 
the integral over the whole space of the density multiplied by the local 
exchange-correlation energy per electron:

• The Local Density Approximation (acronym: LDA), due to Kohn and 
Sham, consists in assuming that the local exchange-correlation energy 
per electron only depends on the local density  and that it is equal to that 
of an homogeneous electron gas with the same density (in a neutralizing 
background ‒ the “jellium”):

Exc[n] =
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Local Density Approximation

• The exchange part can be calculated analytically:

• The correlation part is obtained from accurate numerical simulations 
beyond DFT (e.g. Quantum Monte Carlo)

εhom
x (n(r)) = − 3

4π
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Local Density Approximation

• Globally, LDA works very well (hence, it is widely used). 
Example: hafnon (HfSiO4) / zircon (ZrSiO4)

‒ body-centered tetragonal

‒ primitive cell with 2
formula units of MSiO4

‒ alternating SiO4 tetrahedra
and MO8 units, sharing
edges to form chains parallel to [0 0 1]

‒ in the MO8 units, four O atoms are closer to the Zr atoms than the 
four other ones

‒ O atoms are 3-fold coordinated

(a) (b)



Local Density Approximation

• Globally, LDA works very well (hence, it is widely used). 
Example: hafnon (HfSiO4) / zircon (ZrSiO4)

Lattice parameters are within 1 or 2% from the experimental values.



Beyond LDA

• However, in some particular cases (for instance, the hydrogen bond), it 
clearly shows its limits.

• Considerable efforts are dedicated to improving this approximation. One 
of the tracks that are pursued is to include a dependence on the gradients 
of the local density:

This is the generalized gradients approximation (acronym: GGA).

• In this case, there is no model (such as the homogeneous electron gas) 
for which an analytic expression can be obtained.
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Beyond LDA

• There exists a wide variety of GGA functionals which have been 
constructed trying to account for various sum rules
(acronyms: PBE, PW86, PW91, LYP, ...).

• Another kind of approximation consists in obtaining a local form for the 
exchange potential by deriving the exchange term that appears in the 
Hartree-Fock approximation. This approach is referred to as exact 
exchange (acronym: EXX).

• hybrid functionals are obtained by mixing (using an empirically 
adjusted parameter) a part of exact exchange and an approximated 
correlated part (acronyms: B3LYP, HSE, ...).

• Another approximation consists in suppressing the self-interaction 
which is present in the Hartree term (acronym: SIC).



DFT and the band gap problem 

• The Density Functional Theory can (in principle) be used to compute 
exactly all the ground-state properties by solving the Kohn-Sham 
equations:

• No direct physical interpretation for the Kohn-Sham eigenvalue (they 
are simply Lagrange multipliers).

• However, the electronic bandstructures obtained within DFT (LDA or 
GGA) are in reasonably good agreement with the experimental data.

• The most notable exception is the band gap which is systematically 
underestimated by 30-50% (or even 100%). 
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DFT and the band gap problem 

0

2

4

6

8

:LDA

In
S
b
,P
,I
n
A
s

In
N
,G
e
,G
a
S
b
,C
d
O

S
i

S
e
,C
u
2
O

A
lA
s
,G
a
P
,S
iC
,A
lP
,C
d
S

Z
n
S
e
,C
u
B
r

Z
n
O
,G
a
N
,Z
n
S

d
ia
m
o
n
d

S
r
O A
lN

C
a
O

0 2 4 6 8

[adapted from van Schilfgaarde et al., PRL 96, 226402 (2006)]

• This problem is related to the existence of a discontinuity in the derivative of the 
(exact) exchange-correlation potential.



• Energy measurement of electrons emitted from solids by the 
photoelectric effect (used to study occupied states)

Direct photoemission spectroscopy

hν
|ΨN

0
〉

Many-body ground 
state with N 
electrons



Excited Many-body 
state with N-1 
electrons

|ΨN−1

i
〉

e-

Direct photoemission spectroscopy



• Used to study empty states

Indirect photoemission spectroscopy

|ΨN

0
〉

Many-body ground 
state with N 
electrons

e-



Excited Many-body 
state with N+1 
electrons

Indirect photoemission spectroscopy

hν

|ΨN+1

i
〉



A different approach: Hedin’s equations

 The iteration starts by setting Σ=0, G=G0

 Then the set of equations should be iterated until self-consistency in all terms is reached

 “True” quasi-particle band structures and optical properties

Quasi-particle equation
[

ĥ0 +Σ(εQP)
]

|ΨQP〉 = ε
QP|ΨQP〉

Exact formalism but challenging 
problem that cannot be solved 
without resorting to approximations!



The band gap within G0W0

• The agreement with experiments is much better!
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The band gap within G0W0

• The calculated band structures are in excellent agreement with those 
measured experimentally.

[from Aulbur et al., Solid State Physics 54, 1 (2000)]



Describing the structure 
of the system to be investigated



The primitive cell

• A crystal is a solid in which the constituent atoms, molecules, or ions 
are packed in a regularly ordered, repeating pattern (called the primitive 
cell) expending in all three spatial dimensions.

Crystal
Primitive
unit cell

Bravais Lattice



The Bravais lattice

• The lattice is defined by its primitive vectors a1, a2, and a3 which are 
independent and such that each point of the lattice can be written as:
R = l a1 + m a2 + n a3 with l, m, n ∈ ℤ

• Reciprocal lattice: G = l b1 + m b2 + n b3 with l, m, n ∈ ℤ and

a1
a2

a3

α3

α1
α2

Primitive volume
Ω = a1 · (a2 × a3)
= a2 · (a3 × a1)
= a3 · (a1 × a2)

ai · bj = 2πδi j



The primitive vectors in ABINIT

• ai(j) → rprimd(j,i) = rprim(j,i)×acell(i)

• ai → acell(i) / αi → angdeg(i)

     acell    9.5000000000E+00  9.5000000000E+00  1.0000000000E+01
     rprim    0.8660254038E+00  5.0000000000E-01  0.0000000000E+00
             -0.8660254038E+00  5.0000000000E-01  0.0000000000E+00 
              0.0000000000E+00  0.0000000000E+00  1.0000000000E+00

hexagonal

     acell    9.5000000000E+00  9.5000000000E+00  1.0000000000E+01
    angdeg    120 90 90

     acell    9.0000000000E+00  9.0000000000E+00  9.0000000000E+00
    angdeg    48 48 48

trigonal

hexagonal



The atomic positions in ABINIT

• number of atoms → natom

• reduced coordinates → xred

• cartesian coordinates → xcart (in Bohr) / xangst (in Å)

• type of atoms → typat

• space group → spgroup + natrd

• number of symmetries → nsym

• symmetry operations → symrel + tnons

• Abinit assumes atomic units by default: lengths are in Bohr, energies are 
given in Hartree



• with ABINIT (input file):

Example 1: c-ZrO2

     natom         3
     acell    5.0100000000E+00  5.0100000000E+00  5.0100000000E+00 ANGST
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
     typat    1  2  2
      xred    0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
              2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
             -2.5000000000E-01 -2.5000000000E-01 -2.5000000000E-01



• with ABINIT (output file):

Example 1: c-ZrO2

 Symmetries : space group Fm -3 m (#225); Bravais cF (face-center cubic)
   spgroup       225
    symrel    1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
              0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0

              ...                               ...

              0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
             -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0

inversion mirror plane



• with ABINIT (input file):

Example 1: c-ZrO2

     natom         3
     acell    5.0100000000E+00  5.0100000000E+00  5.0100000000E+00 ANGST
     rprim    0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
              5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
              5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
     typat    1  2  2
   spgroup       225
     natrd         2
      xred    0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
              2.5000000000E-01  2.5000000000E-01  2.5000000000E-01



The plane-wave basis set



Treatment of periodic systems

• For periodic systems (with the lattice vectors R), Bloch theorem’s 
states:

• If we define the reciprocal lattice (with the lattice vectors G), such that:

the periodic part of the Bloch’s function can be written:

where the coefficients unk(G) are obtained by a Fourier transform:

ψnk(r + R) = eik·Rψnk(r)

ψnk(r) = eik·runk(r) unk(r + R) = unk(r)with

eiG·R = 1



• The coefficients unk(G) for the lowest-energy eigenfunctions decrease 
exponentially with the kinetic energy (k+G)2/2.

• The plane-waves to be considered in the sum are selected using a 
kinetic energy cut-off Ecut (which defines the plane-wave sphere):

Kinetic energy cut-off

(k +G)2

2
< Ecut

↑



The number of plane-waves is not a continuous 
function of the cut-off energy...

N0 4 8 12 16 20 24
pw

cut
1/2(2E    )

... nor it is as a function of the lattice parameter



There are discontinuities in the pressure and 
energy curves

Pressure

Lattice parameter

Energy

Lattice parameter

Use ecutsm to remove the discontinuities



• Advantages
‒ orthonormal basis set 
‒ the quality of the basis set can be systematically increased by 

increasing the cut-off energy
‒ Fast algorithms to go from G to r space and vice-versa (FFT)
‒ Same accuracy in any region of the simulation box
‒ Easy to implement (e.g. simple expression for the kinetic operator)

• Problem:
‒ huge number of PWs is required to describe localized features (core 

orbitals, oscillations of other orbitals close to the nucleus)
‒ Pseudopotentials (or, in general, « pseudization ») are needed to 

eliminate the undesirable small wavelength features

Plane-waves are a natural and simple basis...



The supercell technique for non-periodic systems
Point defect in a bulk solidMolecule Surface 

The supercell must be sufficiently large: convergence study



Representation of the density (I)

nbk(r) = u
∗

bk
(r) ubk(r)

Density associated with one eigenfunction:

In Fourier space:

The sphere for           has a double radius 

nbk(r) =
(
∑

G

u
∗

bk
(G)e−iGr

) (
∑

G′

ubk(G′)eiG′r
)

=

=

∑

GG′

[

u
∗

bk
(G)ubk(G′)

]

e
i(G′−G)r

n(G)

is given by the convolution ofn(G) u(G)



Representation of the density (II)

. . . . . . . . . .. . . .   . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . .. . . . . .   . . .. . . . .   . . . .

. . . . . . . . . .

G2

G1

Ny

Nx

Reciprocal lattice

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . .

. . . . . . . . . .

Ny

Nx

Real lattice: original cell

  

€ 

r 
R 2

  

€ 

r 
R 1

Fast transform                           algorithm: Fast Fourier Transformr i{ }  ↔  G{ }

unk(G) n(r) =
∑

nk

fnk|unk(r)|2 n(G)
FFT FFT

• Computational cost scales almost linearly with the number of points 
in the “dense” FFT mesh used for the density

O(N log N)



Poisson’s equation in G-space (I)

VH(r) =

∫
n(r′)

|r − r
′|

dr
′ ⇐⇒ ∇2

VH(r) = −4π n(r)

G
2
VH(G) = 4πn(G) =⇒ VH(G) =

4π n(G)

G2

Using:                                   one obtains:F(∇VH) = iGVH(G)

n(G) VH(G) =
4π n(G)

G2
VH(r)

Poisson solver with                  operations:

FFT

O(N log N)



Poisson’s equation in G-space (II)

VH(G = 0)

n(G = 0) =
1

Ω

∫
Ω

n(r) dr Number of electrons 
per unit cell

diverges at G = 0

• The divergence is compensated by a similar divergence due to the 
electron-ion interaction (charge neutrality)

VH(G) =
4π n(G)

G2

Pros and Cons 

 Very efficient

 Periodic conditions are automatically enforced even in isolated systems 



Application of the Hamiltonian

• Kinetic part in G-space (exact and efficient):

∇2|ψ〉 =
∑

G

∇2
u(G)eiGr

= −
∑

G

G
2
u(G)eiGr

•                 is computed in real space. The derivatives of n needed 
for the GGA are computed exactly 
Vxc[n]|ψ〉

•            is computed in real spaceVH |ψ〉

• Iterative techniques (e.g. conjugate gradient method) to compute the 
lowest eigenstates. The basic steps of the algorithm are:              

H|ψ〉 and orthogonalization of
{

|ψi〉
}



Brillouin zone integration



T = −
1

2

occ∑

i

〈ψi|∇
2|ψi〉

n(r) =

occ∑

i

ψi(r)∗ψi(r)

Discrete summations over states:

Density:

Periodic case: summation over bands and integration over the BZ

How to treat                              ?

Kinetic energy:

From discrete states to the Brillouin zone (BZ)

n(r) =
∑

b

1

Ωk

∫
Ωk

f (εbk)ψ∗bk
(r)ψbk(r) dk

T = −
1

2

∑
b

1

Ωk

∫
Ωk

f (εbk) 〈ψbk|∇
2|ψbk〉 dk

1

Ωk

∫
Ωk

X(k) dk



∑

k

wk = 1
1

Ωk

∫
Ωk

X(k) dk =⇒
∑
{k}

wkX(k)

Brillouin zone integration

Special points
Weights

If�
      •� the integrand is periodic
      •� the integrand is continuous and differentiable at all orders
      •� homogeneous k-grids and weights all equal

Then exponential convergence with respect to Δk

	

  •�  OK for semiconductors where the occupation number is   
independent of k within a band

�  •�  Convergence: one ought to test several grids with different Δk�



Treatment of metals (I)
Behavior of                      ?f (εF − εnk )

Discontinuity of the integrand 
at the Fermi level!

Smearing technique
First attempt: generalization of DFT to finite temperature

	

 	

  •

	

 	

        f goes from 0 to 2 in an energy range of width  kT

	

 	

  • E(T) ≅  E(T=0) + αT 2  + ...
F(T) = E - TS

f(εnk ) = 
1

1+e(εnk−εF )/kT

Problem:  
the T needed to recover the same convergence as for semiconductors is  very high (>> 2000 K)



Treatment of metals (II)
Better technique: the goal is to obtain E(σ = 0)
� from a total energy expression E(σ) with modified occupation numbers, 

where σ is similar to a temperature

	

  E(σ)  ≈  E(σ=0) + α σ2 + O(σ3)      with  α small

	

 or  E(σ)  ≈  E(σ=0) + β σn + O(σn+1)    with  n  >  2

	


        Gaussian smearing:	

 	

 	

 	

 	



	

 Other methods: 
           Gauss - Hermite smearing, 
          “Cold Smearing”  (N. Marzari)

Spin factor

∫
∞

−∞
δ̃(x) dx = 1f (εnk) = s

∫
∞

εnk−εF
σ

δ̃(x) dx

δ̃(x) =
1

σ
√

2π
e
−( x

4σ
)2



• Seitz notation for the symmetry operations of the crystal:

• Applied to the equilibrium position vector of atom κ relative to the 
origin of the cell τκ, this symmetry transforms it as:

where Ra is a translation vector of the crystal.

Crystal symmetries and k-points (I)

3×3 real
orthogonal
matrix

vector

� �� �� �� �
rotation translation

smaller than any 
primitive vector
of the crystal

symrel tnons

{S | v(S)}τκ = Sτκ +v(S) = τκ � +Ra

{S | v(S)}
�

Sαβ | vα(S)
�



Irreducible wedge



























εSk = εk

uSk(r) = e−iSk·t uk

(

S−1(r − t)
)

uSk(G) = e−i(Sk+G)·t uk(S−1G)

Crystal symmetries and k-points (II)

The information in the full Brillouin zone 
can be reconstructed by symmetry from an 
appropriate irreducible wedge:

• Monkhorst-Pack grids  Phys. Rev. B 13, 5188 (1976)

• Tetrahedron method ...


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


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
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εnk = ε−k

unk(r) = u
†

n−k
(r)

unk(G) = u
†

n−k
(−G)



Pseudopotentials



• Idea: Exploit the fact that core electrons occupy orbitals that are the « 
same » in the atomic environment or in the bonding environment

• Separation between core and valence orbitals for the density:

• « Frozen core » approximation:

• This approximation obviously influences the accuracy of the 
calculation!

Core and valence electrons (I) 



Small / large core 

• It depends on the target accuracy of the calculation!
• For some elements, the core/valence partitioning is obvious:

F atom:� 1s2      2s2  2p5

   IP          1keV    10-100 eV
• For some others, it is not:

Ti atom:� 1s2   2s2  2p6   3s2  3p6   4s2  3d2 � small core

� 1s2   2s2  2p6   3s2  3p6   4s2  3d2 � large core
   IP                                   99.2 eV   43.3eV

• Gd atom:� small core with n=1,2,3 shells, might include
� 4s, 4p, and 4d in the core, 4f partially filled



• Separation between core and valence orbitals for the energy:

• The valence orbitals must still be orthogonal to core orbitals
• We need a “pseudopotentials” that mimics the quantum mechanical 

interaction between the frozen core orbitals and the valence electrons

Core and valence electrons (II) 

EKS ψ i{ }⎡⎣ ⎤⎦ = ψ i −
1
2
∇2 ψ i

i
∑ + Vext (r)n(r)∫ dr + 1

2
n(r1)n(r2 )
r1 - r2∫ dr1dr2 + Exc n[ ]

EKS ψ i{ }⎡⎣ ⎤⎦ = ψ i −
1
2
∇2 ψ i

i∈core

Ncore

∑ + Vext (r)ncore(r)∫ dr + 1
2

ncore(r1)ncore(r2 )
r1 - r2

∫ dr1dr2

                  + ψ i −
1
2
∇2 ψ i

i∈val

Nval

∑ + Vext (r)nval (r)∫ dr + 1
2

nval (r1)nval (r2 )
r1 - r2

∫ dr1dr2

                  + nval (r1)ncore(r2 )
r1 - r2

∫ dr1dr2 + Exc ncore + nval[ ]

Frozen (imported from the atomic environment)

Computed until 
self-consistency 
is reached



• Pseudopotentials try to remove completely the core orbitals from the 
simulation by removing the strong changes within a « cut-off radius rcut

Removing core electrons (I)

All-electron atom

Pseudo atom

•  

•  

• norm conservation:

• D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979)

Vps = εi +
1

2

∇2ψ
ps

i

ψ
ps

i

Different potentials 
for the different 
angular momenta



3s Radial wave function of Si

Example of pseudopotential

Radial distance [a.u.]
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•  

• Norm conservation implies transferability (atom --> crystal)



• The general form of pseudopotential acts on the wavefunctions as: 

with

and 

Removing core electrons (II)

kernel

Spherical 
Harmonics

• Pseudopotentials belong to two different classes:
‒ the semi-local pseudopotentials for which:

‒ the separable pseudopotentials for which: 

Phys Rev. B 26, 4199 (1982)

Phys. Rev. Lett. 48, 1425 (1982)]



• Semi-local pseudopotentials are easily visualized, but separable ones are 
definitely more powerful for numerical techniques: 
‒ semi-local form:

‒ separable:

• A technique was introduced to transform semi-local pseudopotentials into a 
separable form (caution: ghost states may appear).

Forms of pseudopotentials

〈ψk|Vnl|ψk〉 =
∑

GG′

u
∗(G)Vk

nl
(G,G′)u(G′)

〈ψk|Vnl|ψk〉 =
[
∑

G

u(G)Fk

nl
(G)
]∗[∑

G′

F
k

nl
(G′)u(G′)

]



Important papers
1979: Hamann, Schluter, and Chiang paper on the 
norm-conserving (NC) approach

1982: Pseudopotential table by Bachelet and al.

1982: Fully separable Kleinman-Bylander form 

1989: Hamannʼs generalized pseudopotentials

1990: Troullier-Martins pseudization scheme

1991: Gonzeʼs analysis of separable potentials

1990: Vanderbilt ultrasoft pseudopotentials (USPP)

1991: King-Smith real-space pseudopotentials 

Unresolved problems

 Hard compensation charges have to be used in the USPP formalism
 Difficult to go beyond the frozen core (FC) approximation
 Only pseudo quantities are accessible



 Correct nodal shape of the wavefunctions

 Flexible: all-electron, relaxed-core or different levels of frozen core

 Suitable for planewaves (PW), real space grids, wavelets, ....

 PW cutoff comparable to USPP

 Approximations involved in the theory can be easily tested

 NC and USPP are obtained under particular approximations



|Ψ〉 = T̂ |Ψ̃〉

True wavefunction with strong 
oscillations difficult to describe

Smooth pseudo wave.
Computationally efficient

 All-electron pseudopotential method
 KS equations are efficiently solved in the pseudized Hilbert space
 True matrix elements are obtained via 〈Ψ|Â|Ψ〉 = 〈Ψ̃|T †

ÂT |Ψ̃〉

T̂

PAW TRANSFORMATION

 An efficient     is obtained by considering the behavior of electrons in solids:

 Atomic-like in the region around the ions

 Smooth behavior in the interstitial region 



Smooth 
pseudo part

AE onsite 
term

PS onsite term

|Ψ〉 = |Ψ̃〉+ |Ψ1〉 − |Ψ̃1〉

 Smooth        in reciprocal space lead to smooth
 Smooth        can be obtained with standard pseudization schemes

|p̃〉|φ̃〉
|φ̃〉

Provided that the 
basis set is complete

|Ψ̃〉 = |Ψ̃1〉 inΩa

∑

i

|φ̃a

i 〉〈p̃
a

i | = 1̂ in Ωa〈p̃ai |φ̃
a
j 〉 = δij

Sufficient condition



Courtesy OF M. Stankovski



 Abinit supports NC pseudos generated by:  

(1) FHI code

(2) APE

(3) Opium

(4) Quantum espresso (UPF format)

(5) Hamannʼs code, Siesta format ...

 Abinit supports PAW files generated by:  

(1) Atompaw                                                       
www.wfu.edu/~natalie/papers/pwpaw/man.html

(2) Vanderbiltʼs USPP code 
www.physics.rutgers.edu/~dhv/uspp/

(3) PAWXML format                         
wiki3.fysik.dtu.dk/gpaw/setups/



The ABINIT software project



What is ABINIT?

• It is a software that allows one to perform first-principles calculations in 
the framework of:
‒ Density-Functional Theory (DFT)� → ground-state
[P. Hohenberg & W. Kohn, Phys. Rev. 136, B864 (1964);
 W. Kohn & L.J. Sham, Phys. Rev. 140, A1133 (1965)]

‒ Many-Body Perturbation Theory (MBPT)� → excited-states
[L. Hedin, Phys. Rev. 139, A796 (1965);
 G. Onida, L. Reining, & A. Rubio, Rev. Mod. Phys. 74, 601 (2002)]

‒ Density-Functional Perturbation Theory (DFPT)� → response
[S. Baroni et al., Rev. Mod. Phys. 73, 515 (2001);
X. Gonze, Phys. Rev. B 55, 10337 (1997);
X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997)]



ABINIT capabilities (I)

• Basis sets
‒ planewaves
‒ projector augmented waves (PAW)
‒ wavelets (BIGDFT effort)

• Representation of atoms: 
‒ many norm-conserving pseudopotential types
‒ different PAW generators

• Exchange-correlation functionals for DFT: 
‒ LDA
‒ GGA
‒ LDA+U (only with PAW) 
‒ + some advanced functionals (Meta-GGA, RPA)

�
��

�

use LibXC



ABINIT capabilities (II)

• Density-Functional Perturbation Theory :
‒ Responses to atomic displacements, to static homogeneous electric 

field, and to strain perturbations
‒ Second-order derivatives of the energy, giving direct access to: 

dynamical matrices at any q, phonon frequencies, force constants; 
phonon DOS, thermodynamic properties (quasi-harmonic approximation); 
dielectric tensor, Born effective charges; elastic constants, internal 
strain; piezoelectric tensor ...

‒ Matrix elements, giving direct access to:
electron-phonon coupling, deformation potentials, superconductivity

‒ Non-linear responses thanks to the 2n+1 theorem - at present:
non-linear dielectric susceptibility; Raman cross-section;
electro-optic tensor



ABINIT capabilities (III)

• Beyond DFT
‒ TDDFT: linear response (Casida) for finite systems excitation energies

‒ GW for accurate electronic quasiparticles
★ 4 plasmon pole models, analytic continuation, or

contour integration
★ non-self-consistent (G0W0), partly self-consistent (GW0 or G0W), 

quasiparticle self-consistent (QSGW), and vertex correction (GWΓ)
★ susceptibility matrix by sum over states (Adler-Wiser)
★ extrapolar and effective-energy technique to reduce the number of 

unoccupied states

‒ Bethe-Salpeter for accurate optical properties calculations



ABINIT capabilities (IV)

• Insulators/metals - smearings: Fermi, Gaussian, Gauss-Hermite ...

• Collinear spin / non-collinear spin / spin-orbit coupling

• Forces, stresses, automatic optimization of atomic positions and unit 
cell parameters (Broyden and Molecular dynamics with damping)

• Molecular dynamics (Verlet or Numerov), Nosé thermostat, Langevin 
dynamics

• Electric field gradients

• Symmetry analyzer (database of the 230 spatial groups and the 1191 
Shubnikov magnetic groups)



• It all started in 1997...
Idea:� softwares for first-principles simulations become more and
� more sophisticated (not easy to develop and maintain).
Solution: worldwide collaboration of specialized, complementary groups
Model: Linux software development: ‘free software’ (GPL License)

• As of today (2014)
‒ the software consists of more than 400 kLines of F90
‒ more than 80 contributors
‒ there are more than 1200 people on the users mailing list

A bit of history...



External files in a ABINIT run

Filenames

ABINIT
Main input

Pseudopotentials

(previous results)

« log »

Main output

(other results)

Results: density (_DEN), potential (_POT),
               wavefunctions (_WFK), ...

Example of “Filenames” file:

../t11.in  
t1x.out
t1xi
t1xo
t1x
../../../Psps_for_tests/01h.pspgth

 prompt:> abinit < filenames > log 2> err &



Functional structure of ABINIT

Parser

Checks, prediction of 
memory needs ...

DRIVER

Summary of results

CPU/Wall clock 
time analysis

Treatment of each dataset in turn

Processing units

Density, forces,
MD, TDDFT ...

Linear Responses to 
atomic displacement

electric field

Non-linear responses

GW computation of
band structure

BSE excitons+optic



ABINIT tutorials
http://www.abinit.org/documentation/tutorials



Shared Memory  
(UMA)

Distributed  Memory 
Hybrid Distributed-Shared  

Memory 

Common configuration in 
supercomputing centers

Parallelism in ABINIT

For distributed-memory, shared-memory and hybrid architectures 

For shared memory multiprocessing programming 

Two different parallel paradigms:

 prompt:> mpirun -n 2 abinit < filenames > log 2> err &



Parallelism in ABINIT

MPI-parallelism of the DFT part of ABINIT:
 Parallelism over k points and spins: very efficient, memory is distributed but 

speedup is limited by nkpt * nsppol 
 Combined band/FFT/ k point/spin parallelism (paral_kgb=1): much better 

scalability. need excellent network and MPI-IO
  Parallelism over bands for linear-response calculations: efficient; can lead to 

large speed-ups; no memory gain; combined with k point and spin 
parallelization

 Parallelism over perturbations for linear-response calculations: very efficient, 
limited by the number of perturbation

MPI-parallelism of the GW part of ABINIT:
 k-point parallelism: efficient but no memory gain
 band parallelism: very efficient; can lead to larger speed-ups; memory gain



ABINIT DFPT – PERFORMANCE ANALYSIS

Test done in

october 2011 ! Repartition of time in response function calculations

Sequential parts Linear Algebra Reading of wave-functions

 A significant part of the overall wall-time is spent in FFTs and in linear algebra routines

 IO becomes the main bottleneck when Ncpus > 64

Optimized libraries are needed for achieving optimal performance (Blas, 
Lapack, MPI-IO)



Libraries for High-Performance Computing

Basic Linear Algebra Subprograms: a de facto standard to perform linear 
algebra operations such as vector and matrix multiplication

Linear Algebra PACKage: software library for numerical linear algebra 
(linear equations, eigenvalue problems, ...). It depends upon the BLAS in 
order to effectively exploit the caches

Implementations

•  Netlib BLAS: The official reference implementation (written in Fortran77)
•  ACML: for AMD architectures
•  ATLAS: Automatically Tuned Linear Algebra Software, an open source implementation of BLAS
•  ESSL: IBM's Engineering and Scientific Subroutine Library, supporting the PowerPC architecture
•  Goto BLAS:  Gotoʼs implementation of BLAS 
•  Intel MKL: for Intel architectures
•  and many others

C library for computing the discrete Fourier transform of arbitrary input 
size, and of both real and complex data. 

Wrappers with the same interface are provided by MKL and ESSL



How to link Abinit against MKL
 (FFT+BLAS+LAPACK)

$> configure --with-config-file=myconf.ac && make -j4

$> cat myconf.ac

# FFT Library
with_fft_flavor="fftw3"

with_fft_libs="-L/opt/intel/mkl/lib/intel64 -lmkl_intel_lp64,                       
-lmkl_core -lmkl_intel_sequential -lpthread -lm"

with_fft_includes="-I/opt/intel/mkl/include"

# BLAS-LAPACK
with_linalg_flavor="mkl"
with_linalg_libs="-L/opt/intel/mkl/lib/intel64 -lmkl_lapack95_lp64 -
lmkl_blas95_lp64 -lmkl_intel_lp64 -lmkl_core -lmkl_intel_sequential -lpthread 
-lm"

# consult the MKL link line advisor if you experience problems with MKL
# http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

See also ~abinit/doc/build and ~abinit/doc/config/build-
examples



The developers...
• UCLouvain (Belgium) : � X. Gonze, J.-M. Beuken, A. Jacques, G.-M. Rignanese, S. Leroux, M. Giantomassi,

� F. Da Pieve, A. Lherbier, M. Oliveira
• CEA-Bruyeres (France) :� M. Torrent, F. Jollet, G. Zérah, B. Amadon, G. Jomard, M. Mancini,

� F. Bottin, S. Mazevet, M. Delaveau, T. Rangel
• University of Liège (Belgium) :� M. Verstraete, Ph. Ghosez, J.-Y. Raty, P. Hermet
• Chinese Academy of Science (China) :� A. Zhou, L. Fang, L. He
• CEA-Grenoble (France) : � T. Deutsch, P. Boulanger, D. Caliste
• University of Montréal (Canada) : � M. Côté, S. Blackburn, J. Laflamme, G. Antonius
• Ecole Polytechnique (France) :� L. Reining, A. Berger
• University of Milano (Italy) : � G. Onida, D. Sangalli
• CEA-Gif-sur-Yvette (France) : � F. Bruneval
• Rutgers University (USA) : � D. Hamann
• University of San Sebastian (Spain) : � Y. Pouillon
• University of Basel (Switzerland) : � S. Goedecker 
• ESRF Grenoble (France) : � L. Genovese
• Dalhousie University (Canada) :� J. Zwanziger
• University of Caen (France) : � P.-M. Anglade
• University of Amman (Jordania) : � R. Shaltaf
• ENS Lyon (France) : � R. Caracas
• CNRS-Grenoble (France) : � V. Olevano
• Corning Inc. (USA) : � D.C. Allan
• Mitsubishi Chemical Corp. (Japan) :� M. Mikami
• University of York  (UK):� R. Godby 

5th ABINIT Developer Workshop
Han-sur-Lesse (Belgium), April 2011


