Electric Polarization and Homogeneous Electric Fields in Periodic Systems

Josef W. Zwanziger

iDepartment of Chemistry and Institute for Research in Materials
Dalhousie University
Halifax, Nova Scotia

May 2014
Outline

1. Computational Framework

2. Homogeneous electric fields
Density functional theory

Minimize

\[E_{\text{el}} \{ \psi \} = \sum_{\alpha}^{\text{occ}} \langle \psi_\alpha | T + v_{\text{ext}} | \psi_\alpha \rangle + E_{\text{Hxc}}[n] - \sum_{\alpha\beta}^{\text{occ}} \epsilon_{\beta\alpha} (\langle \psi_\alpha | \psi_\beta \rangle - \delta_{\alpha\beta}) \]

where

\[n(r) = \sum_{\alpha}^{\text{occ}} \psi^*_\alpha(r) \psi_\beta(r) \]

and gradient is \(\delta E / \delta \langle \psi_\alpha \rangle \)
Planewaves and pseudopotentials

Periodicity of the solid leads to Bloch theorem:

\[\psi_{nk}(r) \propto e^{i\mathbf{k} \cdot \mathbf{r}} u_{nk}(\mathbf{r}) \]

and the cell periodic part is expanded in planewaves:

\[u_{nk}(\mathbf{r}) = \sum_{\mathbf{G}} u_{nk}(\mathbf{G}) e^{i\mathbf{G} \cdot \mathbf{r}} \]

This is efficient if the core electrons are replaced by pseudopotentials.
The PAW method (Blöchl) projects from pseudofunctions back to all-electron valence space functions.

\[
|\psi\rangle = T|\tilde{\psi}\rangle
\]

\[
T = 1 + \sum_{i,R} \left(|\phi_{iR}\rangle - |\tilde{\phi}_{iR}\rangle \right) \langle \tilde{\phi}_{iR} | \langle \psi | A | \psi \rangle = \langle \tilde{\psi} | A | \tilde{\psi} \rangle + \sum_{ij,R} \langle \tilde{\psi} | \tilde{p}_{iR} \rangle \langle \tilde{p}_{jR} | \tilde{\psi} \rangle \times
\]

\[
\left(\langle \phi_{iR} | A | \phi_{jR} \rangle - \langle \tilde{\phi}_{iR} | A | \tilde{\phi}_{jR} \rangle \right)
\]
Polarization

Polarization refers to electric dipole moment per volume. Simple in finite systems, not simple to compute in extended systems (thermodynamic limit).
Homogeneous electric field

\[V(R + r) = V(r) \]

\[V(r) + eE \cdot r \]

- “Obvious” coupling between external electric field \(E \) and electric charge leads to energy term \(eE \cdot r \)
- This term is OK for finite systems but not for infinite systems!
- Appear to have lost all bound states!
This approach begins with work of Resta:

\[P(\lambda) = \frac{1}{V} \int d\mathbf{r} \rho(\lambda)(\mathbf{r}) \mathbf{r} \]
\[= \frac{e}{V} \sum_i f_i \langle \phi_i | \mathbf{r} | \phi_i \rangle \]
\[P'(\lambda) = \frac{e}{V} \sum_i f_i \langle \phi'_i | \mathbf{r} | \phi_i \rangle + \langle \phi_i | \mathbf{r} | \phi'_i \rangle \]

Shift of emphasis to derivative of \(P \) is crucial step.\(^1\)

\(^1\)Resta, *Ferroelectrics* 136, 51 (1992)
To first order:

\[P'(\lambda) = \frac{-ie}{m_e V} \sum_i f_i \sum_{j \neq i} \left[\frac{\langle \phi_i | p | \phi_j \rangle \langle \phi_j | V' | \phi_i \rangle}{(E_i - E_j)^2} + \text{c.c} \right] \]

where \(V' \) is the perturbed KS potential and \(E_i \) are the KS eigenenergies.

Working in the parallel transport gauge where \(\langle \phi'_i | \phi_j \rangle = 0 \) for all occupied states \(j \), can write\(^2\)

\[P'(\lambda) = \frac{-ief}{m_e N \Omega} \sum_{k} \sum_{\text{occ}} \sum_{\text{unocc}} \left[\frac{\langle \phi_{kn} | p | \phi_{km} \rangle \langle \phi_{km} | V' | \phi_{kn} \rangle}{(E_i - E_j)^2} + \text{c.c} \right] \]

\(^2\)Gonze PRA 52, 1096 (1995); King-Smith and Vanderbilt, PRB 47, 1651 (1993)
Further development:

By exploiting commutators such as \([\partial/\partial k, H_k]\) and parallel transport gauge, formula in k-space becomes

\[
P'_{\alpha}(\lambda) = \frac{-ief}{N\Omega} \sum_k \sum_n^{\text{occ}} \left[\langle \partial u_{kn}/\partial k_{\alpha} | \partial u_{kn}/\partial \lambda \rangle + c.c. \right]
\]

Note that only ground state wavefunctions appear here!

Going from summation to integration, and integrating by parts, the key result is obtained:

\[
\Delta P = P_1 - P_0 \\
P_{\alpha} = \frac{ife}{8\pi^3} \sum_n^{\text{occ}} \int dk \langle u_{kn} | \partial/\partial k_{\alpha} | u_{kn} \rangle
\]
Finite difference formula for line integral

The integration along the loop in \(k \) space is done via discretization:\(^3\)

\[
\sum_n \int d\mathbf{k}_\alpha \langle u_{nk} | \nabla_{k_\alpha} | u_{nk} \rangle \rightarrow \text{Im} \ln \prod_j \det \langle u_{nk_j} | u_{mk_j+b} \rangle
\]

This form is invariant to phase differences between the states at different \(k \) points. In case of PAW:

\[
\langle u_{nk_j} | u_{mk_j+b} \rangle \rightarrow \langle \tilde{u}_{nk_j} T_{k_j} | T_{k_j+b} \tilde{u}_{mk_j+b} \rangle
\]

\(^3\)Resta, *PRL* 80, 1800 (1998)
The total electric polarization is the sum of the electronic part above and the ionic part:

\[P = P_{\text{ion}} + P_{\text{elec}}, \]

with

\[P_{\text{ion}} = \sum_i Z_i r_i \]

just the sum over the charges and positions of the ions in the unit cell, then folded into unit interval (-1,1).
Executing the calculation in **Abinit**

To compute the polarization, just do the following:

- Insulating system
- n_{band} is number of valence bands, no empty bands
- normal ground state calculation
- $\text{berryopt} -1$
- $\text{rfdir} 1 1 1$
- PAW, $n_{\text{sppol}}, n_{\text{spinor}}$ 2 all ok
In output file for AlAs in zero field:

Summary of the results

Electronic Berry phase 7.682370411E-03
Ionic phase -7.500000000E-01
Total phase -7.423176296E-01
Remapping in [-1,1] -7.423176296E-01

Polarization -1.435570235E-02 (a.u. of charge)/bohr^2
Polarization -8.213580860E-01 C/m^2

Polarization in cartesian coordinates (a.u.):
(the sum of the electronic and ionic Berry phase has been folded into [-1, 1])
Electronic berry phase: 0.257330072E-03 0.257330072E-03 0.257330072E-03
...includes PAW on-site term: 0.000000000E+00 0.000000000E+00 0.000000000E+00
Ionic: -0.251221359E-01 -0.251221359E-01 -0.251221359E-01
Total: -0.248648059E-01 -0.248648059E-01 -0.248648059E-01
Inclusion of a Finite Electric Field

Minimize $E = E_0 - \mathbf{P} \cdot \mathbf{E}$, \(^4\) where:

- \mathbf{P} is computed as above
- Norm constraint is imposed: $\langle \psi_n | S | \psi_m \rangle = \delta_{nm}$ (S is identity if NCPP)
- Form gradient:

$$\frac{\delta E}{\delta \langle u_{mk} \rangle} = \frac{\delta E_0}{\delta \langle u_{mk} \rangle} - \mathbf{E} \cdot \frac{\delta \mathbf{P}}{\delta \langle u_{mk} \rangle}$$

- Implemented in \textsc{Abinit}, including PAW,\(^5\) spin polarized systems, spinors, spin-orbit coupling

Finite field in **ABINIT**

- `ndtset 4 (say)`
- `getwfk -1`
- `rfdir 1 1 1`
- `efield1 3*0.0`
- `berryopt1 -1` (Start with zero field, build up field slowly)
- `efield2 0.0001 0.0 0.0`
- `berryopt2 4`
- Look at polarization in output file
Forces and Stress in finite field

- In NCPP, no additional force terms arise (because additional polarization term does not involve ion positions so Hellman-Feynman force (derivative w.r.t position is zero)
- There is NCPP stress
- In PAW, due to ion position dependence of projectors, there are additional force and stress terms in finite field.
- In Abinit, NCPP includes force and stress but PAW is in development.

6Souza, Íñiguez, Vanderbilt, PRL 89, 117602 (2002)
Forces for E-field with PAW

The problem is that in $\text{Im} \ln \prod \det M$, the M matrix elements

$$M_{n,m} = \langle \tilde{u}_{nkj} \ T_{kj} | T_{kj+b} \tilde{u}_{mkj+b} \rangle$$

depend on ionic position through the projectors in T. They must be included in the Hellmann-Feynman force through 7

$$\frac{\partial}{\partial R_i} \text{Im} \ln \prod \det M = \text{Im} \sum \frac{\partial}{\partial R_i} \ln \det M$$

$$= \text{Im} \sum \text{Tr} \left[M^{-1} \frac{\partial M}{\partial R_j} \right]$$

7Nunes and Gonze *PRB* 63, 155107 (2001); Audouze, Jollet, Torrent, Gonze *PRB* 73, 235101 (2006)
Effect of PAW force

Forces included in jzwanzig/7.7.3-private. Example: AlAs with PAW and finite electric field.

![Graph showing the force error (F - F_{fd})/F_{fd} vs. kptrlen.](image)

- Ionic force
- Ionic+PAW force
Convergence of polarization with k-mesh for Si.

\[\mathbf{P} = \chi \mathbf{E} \]

\[\varepsilon^\infty = 1 + 4\pi\chi \]
Applications

Polarization is computed as a function of applied field and fit to the form (SI units for polarization and field):

\[P_i = \varepsilon_0 \chi_{ij}^{(1)} E_j + 2\varepsilon_0 d_{ijk} E_j E_k, \]
Applications

- High and low frequency susceptibility: \(\chi_{\alpha\beta} = \frac{dP_\alpha}{dE_\beta} \)
- Second order susceptibility

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\epsilon^0)</th>
<th>(\epsilon^\infty)</th>
<th>(d_{123}) pm/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIP (LDA)</td>
<td>10.26</td>
<td>8.01</td>
<td>21.5</td>
</tr>
<tr>
<td>(PBE)</td>
<td>10.09</td>
<td>7.84</td>
<td>23.2</td>
</tr>
<tr>
<td>(expt)</td>
<td>9.8</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>AlAs (LDA)</td>
<td>11.05</td>
<td>8.75</td>
<td>32.7</td>
</tr>
<tr>
<td>(PBE)</td>
<td>10.89</td>
<td>8.80</td>
<td>38.8</td>
</tr>
<tr>
<td>(expt)</td>
<td>10.16</td>
<td>8.16</td>
<td>32</td>
</tr>
<tr>
<td>AlSb (LDA)</td>
<td>12.54</td>
<td>11.17</td>
<td>98.3</td>
</tr>
<tr>
<td>(PBE)</td>
<td>12.83</td>
<td>11.45</td>
<td>103</td>
</tr>
<tr>
<td>(PBE + SO)</td>
<td></td>
<td>9.76</td>
<td></td>
</tr>
<tr>
<td>(expt)</td>
<td>11.68</td>
<td>9.88</td>
<td>98</td>
</tr>
</tbody>
</table>
Application: MgO Dielectric

<table>
<thead>
<tr>
<th>Method</th>
<th>ϵ^∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAW E-field, PBE</td>
<td>3.089</td>
</tr>
<tr>
<td>PAW DFPT, LDA</td>
<td>3.057</td>
</tr>
<tr>
<td>NCPP DFPT, LDA</td>
<td>3.063</td>
</tr>
<tr>
<td>Expt</td>
<td>3.014</td>
</tr>
</tbody>
</table>

N.B. in DFPT, $\frac{\partial^2 E}{\partial E_i \partial E_j} \bigg|_0$ is computed directly, without presence of a field.

MgO in Finite Electric Field

slope = $\chi = 0.1662$
$1 + 4\pi\chi = 3.089$
Inverse of dielectric tensor changed by stress or strain:

\[\Delta B_{ij} = p_{ijkl} \epsilon_{kl} = \pi_{ijkl} \sigma_{kl} \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>ϵ</th>
<th>p_{11}</th>
<th>p_{21}</th>
<th>p_{44}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si (LDA)</td>
<td>12.4</td>
<td>-0.106</td>
<td>0.015</td>
<td>-0.052</td>
</tr>
<tr>
<td>(PBE)</td>
<td>12.2</td>
<td>-0.112</td>
<td>0.010</td>
<td>-0.061</td>
</tr>
<tr>
<td>(expt)</td>
<td>11.7</td>
<td>-0.094</td>
<td>0.017</td>
<td>-0.051</td>
</tr>
<tr>
<td>C (LDA)</td>
<td>5.71</td>
<td>-0.263</td>
<td>0.0673</td>
<td>-0.160</td>
</tr>
<tr>
<td>(PBE)</td>
<td>5.79</td>
<td>-0.268</td>
<td>0.0643</td>
<td>-0.171</td>
</tr>
<tr>
<td>(expt)</td>
<td>5.65–5.7</td>
<td>-0.244–-0.42</td>
<td>0.042–0.27</td>
<td>-0.172–-0.162</td>
</tr>
</tbody>
</table>
Photoelasticity in oxides

<table>
<thead>
<tr>
<th>Quantity</th>
<th>MgO</th>
<th>BaO</th>
<th>SnO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{11}</td>
<td>325.8</td>
<td>158.3</td>
<td>111.7</td>
</tr>
<tr>
<td>C_{33}</td>
<td></td>
<td>43.4</td>
<td></td>
</tr>
<tr>
<td>C_{12}</td>
<td>98.8</td>
<td>46.8</td>
<td>95.0</td>
</tr>
<tr>
<td>C_{13}</td>
<td></td>
<td>18.9</td>
<td></td>
</tr>
<tr>
<td>C_{44}</td>
<td>162.5</td>
<td>35.7</td>
<td>30.4</td>
</tr>
<tr>
<td>C_{66}</td>
<td></td>
<td>85.2</td>
<td></td>
</tr>
<tr>
<td>π_{11}</td>
<td>-0.980</td>
<td>0.990</td>
<td>-1.70</td>
</tr>
<tr>
<td>π_{33}</td>
<td></td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>π_{12}</td>
<td>0.172</td>
<td>-0.176</td>
<td>2.19</td>
</tr>
<tr>
<td>π_{13}</td>
<td></td>
<td>6.20</td>
<td></td>
</tr>
<tr>
<td>π_{44}</td>
<td>-0.446</td>
<td>-1.26</td>
<td>2.31</td>
</tr>
<tr>
<td>π_{66}</td>
<td></td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>ε_{11}^∞</td>
<td>3.04</td>
<td>4.27</td>
<td>8.67</td>
</tr>
<tr>
<td>ε_{33}^∞</td>
<td></td>
<td>7.04</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing stress-strain relationship](image)
Summary

- Modern theory of polarization and finite electric fields
- NCPP, PAW, spinors, spin polarized systems
- Applications to linear and nonlinear electric susceptibility
- MANY thanks to Xavier Gonze, Marc Torrent, Abinit development and theory community