J. W. Zwanzige

Computationa Framework

Homogeneous electric fields

Electric Polarization and Homogeneous Electric Fields in Periodic Systems

Josef W. Zwanziger

iDepartment of Chemistry and Institute for Research in Materials Dalhousie University Halifax, Nova Scotia

May 2014

Outline

1 Computational Framework

2 Homogeneous electric fields

Density functional theory

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

$$E_{\rm el}\{\psi\} = \sum_{\alpha}^{\rm occ} \langle \psi_{\alpha} | T + v_{\rm ext} | \psi_{\alpha} \rangle + E_{\rm Hxc}[n] - \sum_{\alpha\beta}^{\rm occ} \epsilon_{\beta\alpha} (\langle \psi_{\alpha} | \psi_{\beta} \rangle - \delta_{\alpha\beta})$$

where

Minimize

$$n(\mathbf{r}) = \sum_{\alpha}^{\mathrm{occ}} \psi_{\alpha}^{*}(\mathbf{r})\psi_{\beta}(\mathbf{r})$$

and gradient is $\delta E/\delta \langle \psi_{\alpha} |$

Planewaves and pseudopotentials

J. W. Zwanzige

Computational Framework

Homogeneous electric fields Periodicity of the solid leads to Bloch theorem:

 $\psi_{n\mathbf{k}}(\mathbf{r}) \propto e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$

and the cell periodic part is expanded in planewaves:

$$u_{n\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{G}} u_{n\mathbf{k}}(\mathbf{G}) e^{i\mathbf{G}\cdot\mathbf{r}}$$

This is efficient *if* the core electrons are replaced by pseudopotentials.

イロト イポト イヨト イヨト 二日

Projector Augmented Wave Method

J. W. Zwanziger

Computational Framework

Homogeneous electric fields The PAW method (Blöchl) *projects* from pseudofunctions back to all-electron valence space functions.

$$\begin{aligned} |\psi\rangle &= T |\tilde{\psi}\rangle \\ T &= 1 + \sum_{i,\mathbf{R}} \left[|\phi_{i\mathbf{R}}\rangle - |\tilde{\phi}_{i\mathbf{R}}\rangle \right] \langle \tilde{p}_{i\mathbf{R}}| \\ \langle \psi | A | \psi \rangle &= \langle \tilde{\psi} | A | \tilde{\psi} \rangle + \sum_{ij,\mathbf{R}} \langle \tilde{\psi} | \tilde{p}_{i\mathbf{R}} \rangle \langle \tilde{p}_{j\mathbf{R}} | \tilde{\psi} \rangle \times \\ \left(\langle \phi_{i\mathbf{R}} | A | \phi_{j\mathbf{R}} \rangle - \langle \tilde{\phi}_{i\mathbf{R}} | A | \tilde{\phi}_{j\mathbf{R}} \rangle \right) \end{aligned}$$

Polarization

J. W. Zwanzige

Computational Framework

Homogeneous electric fields Polarization refers to electric dipole moment per volume. Simple in finite systems, not simple to compute in extended systems (thermodynamic limit).

Homogeneous electric field

J. W. Zwanzigei

Computationa Framework

Homogeneous electric fields

- $V(\mathbf{R} + \mathbf{r}) = V(\mathbf{r})$ $V(\mathbf{r}) + e\mathbf{E} \cdot \mathbf{r}$
 - "Obvious" coupling between external electric field E and electric charge leads to energy term eE · r
 - This term is OK for finite systems but not for infinite systems!
 - Appear to have lost all bound states!

Modern Theory of Polarization

J. VV. Zwanzige

Computational Framework

Homogeneous electric fields

This approach begins with work of Resta:

$$\mathbf{P}(\lambda) = \frac{1}{V} \int d\mathbf{r} \rho_{\lambda}(\mathbf{r}) \mathbf{r}$$

$$= \frac{e}{V} \sum_{i} f_{i} \langle \phi_{i} | \mathbf{r} | \phi_{i} \rangle$$

$$\mathbf{P}'(\lambda) = \frac{e}{V} \sum_{i} f_{i} \langle \phi_{i}' | \mathbf{r} | \phi_{i} \rangle + \langle \phi_{i} | \mathbf{r} | \phi_{i}' \rangle$$

Shift of emphasis to derivative of \mathbf{P} is crucial step.¹

8/26

To first order:

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

$$\mathbf{P}'(\lambda) = \frac{-ie}{m_e V} \sum_i f_i \sum_{j \neq i} \left[\frac{\langle \phi_i | \mathbf{p} | \phi_j \rangle \langle \phi_j | V' | \phi_i \rangle}{(E_i - E_j)^2} + \text{c.c} \right]$$

where V' is the perturbed KS potential and E_i are the KS eigenenergies. Working in the parallel transport gauge where $\langle \phi'_i | \phi_j \rangle = 0$ for all occupied states j, can write²

$$\mathbf{P}'(\lambda) = \frac{-ief}{m_e N\Omega} \sum_{\mathbf{k}} \sum_{n}^{\text{occ}} \sum_{m}^{\text{unocc}} \left[\frac{\langle \phi_{\mathbf{k}n} | \mathbf{p} | \phi_{\mathbf{k}m} \rangle \langle \phi_{\mathbf{k}m} | \mathbf{V}' | \phi_{\mathbf{k}n} \rangle}{(E_i - E_j)^2} + \text{c.c} \right]$$

²Gonze *PRA* **52**, 1096 (1995); King-Smith and Vanderbilt, *PRB* **47**, 1651 (1993)

Further development:

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

By exploiting commutators such as $[\partial/\partial k, H_k]$ and parallel transport gauge, formula in k-space becomes

$$P_{\alpha}'(\lambda) = \frac{-ief}{N\Omega} \sum_{\mathbf{k}} \sum_{n}^{\operatorname{occ}} \left[\langle \partial u_{\mathbf{k}n} / \partial k_{\alpha} | \partial u_{\mathbf{k}n} / \partial \lambda \rangle + \operatorname{c.c} \right]$$

Note that *only* ground state wavefunctions appear here! Going from summation to integration, and integrating by parts, the key result is obtained:

$$\Delta \mathbf{P} = \mathbf{P}_1 - \mathbf{P}_0$$

$$P_\alpha = \frac{ife}{8\pi^3} \sum_n^{\text{occ}} \oint d\mathbf{k} \langle u_{\mathbf{k}n} | \partial / \partial k_\alpha | u_{\mathbf{k}n} \rangle$$

Finite difference formula for line integral

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

The integration along the loop in k space is done via discretization: $^{3} \ \ \,$

$$\sum_{n} \int d\mathbf{k}_{\alpha} \langle u_{n\mathbf{k}} | \nabla_{\mathbf{k}_{\alpha}} | u_{n\mathbf{k}} \rangle \to \operatorname{Im} \operatorname{In} \prod_{j} \operatorname{det} \langle u_{n\mathbf{k}_{j}} | u_{m\mathbf{k}_{j}+\mathbf{b}} \rangle$$

This form is invariant to phase differences between the states at different k points. In case of PAW:

$$\langle u_{n\mathbf{k_j}}|u_{m\mathbf{k_j}+\mathbf{b}}
angle o \langle \tilde{u}_{n\mathbf{k_j}}T_{\mathbf{k_j}}|T_{\mathbf{k_j}+\mathbf{b}}\tilde{u}_{m\mathbf{k_j}+\mathbf{b}}
angle$$

³Resta, *PRL* **80**, 1800 (1998)

Total polarization

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

The total electric polarization is the sum of the electronic part above and the ionic part:

 $\textbf{P} = \textbf{P}_{ion} + \textbf{P}_{\textbf{elec}},$

with

$$\mathbf{P}_{\mathrm{ion}} = \sum_{i} Z_{i} \mathbf{r}_{i}$$

just the sum over the charges and positions of the ions in the unit cell, then folded into unit interval (-1,1).

Executing the calculation in ABINIT

J. W. Zwanzigei

Computational Framework

Homogeneous electric fields

To compute the polarization, just do the following:

- Insulating system
- nband is number of valence bands, no empty bands

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

13/26

- normal ground state calculation
- berryopt -1
- rfdir 1 1 1
- PAW, nsppol, nspinor 2 all ok

berryopt output

J. VV. Zwanzige

Homogeneous electric fields

In	output	file f	for <i>i</i>	AlAs	in	zero	fielc	1:

Summary of the results

Electronic Berry phase	7.682370411E-03
Ionic phase	-7.50000000E-01
Total phase	-7.423176296E-01
Remapping in [-1,1]	-7.423176296E-01
Polarization	-1.435570235E-02 (a.u. of charge)/bohr^2
Polarization	-8.213580860E-01 C/m^2
Polarization in cartesian	coordinates (a.u.):
(the sum of the electronic	and ionic Berry phase has been folded into [-1, 1])
Electronic berry phase	: 0.257330072E-03 0.257330072E-03 0.257330072E-03
includes PAW on-sit	e term: 0.00000000E+00 0.0000000E+00 0.0000000E+00
Ionic:	-0.251221359E-01 -0.251221359E-01 -0.251221359E-01
Total:	-0.248648059E-01 -0.248648059E-01 -0.248648059E-01

Inclusion of a Finite Electric Field

J. W. Zwanzige

Computational Framework

Homogeneous electric fields Minimize $E = E_0 - \mathbf{P} \cdot \mathbf{E}$, ⁴ where:

- P is computed as above
- Norm constraint is imposed: $\langle \psi_n | S | \psi_m \rangle = \delta_{nm}$ (S is identity if NCPP)
- Form gradient:

$$\delta E/\delta \langle u_{m\mathbf{k}} | = \delta E_0 / \delta \langle u_{m\mathbf{k}} | - \mathbf{E} \cdot \delta \mathbf{P} / \delta \langle u_{m\mathbf{k}} |$$

 Implemented in ABINIT, including PAW,⁵ spin polarized systems, spinors, spin-orbit coupling

⁵Zwanziger et al., Comp. Mater. Sci. 58, 113 (2012) = + (= +) = -) a.

⁴Nunes and Gonze *PRB* **63**, 155107 (2001); Stengel, Spaldin, Vanderbilt *Nature Physics* **5**, 304 (2009)

Finite field in ABINIT

J. W. Zwanzigei

- Computational Framework
- Homogeneous electric fields

- ndtset 4 (say)
- ∎ getwfk -1
- ∎ rfdir 1 1 1
- efield1 3*0.0
- berryopt1 -1 (Start with zero field, build up field slowly)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

16/26

- efield2 0.0001 0.0 0.0
- berryopt2 4
- Look at polarization in output file

Forces and Stress in finite field

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

- In NCPP, no additional force terms arise (because additional polarization term does not involve ion positions so Hellman-Feynman force (derivative w.r.t position is zero)
- There is NCPP stress⁶
- In PAW, due to ion position dependence of projectors, there are additional force and stress terms in finite field.
- In ABINIT, NCPP includes force and stress but PAW is in development.

⁶Souza, Íñiguez, Vanderbilt, *PRL* **89**, 117602 (2002) < ≧ > < ≧ > ⇒ ⇒ ⇒ ⇒ ∞ <

Forces for E-field with PAW

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

The problem is that in $\operatorname{Im} \ln \Pi \det M$, the *M* matrix elements

$$M_{n,m} = \langle \tilde{u}_{n\mathbf{k_j}} T_{\mathbf{k_j}} | T_{\mathbf{k_j}+\mathbf{b}} \tilde{u}_{m\mathbf{k_j}+\mathbf{b}} \rangle$$

depend on ionic position through the projectors in T. They must be included in the Hellmann-Feynman force through⁷

$$\frac{\partial}{\partial R_i} \operatorname{Im} \ln \Pi \det M = \operatorname{Im} \sum \frac{\partial}{\partial R_i} \ln \det M$$
$$= \operatorname{Im} \sum \operatorname{Tr} \left[M^{-1} \frac{\partial M}{\partial R_j} \right]$$

Effect of PAW force

J. W. Zwanzige

Computational Framework

Homogeneous electric fields Forces included in jzwanzig/7.7.3-private. Example: AIAs with PAW and finite electric field.

19 / 26

Convergence of polarization with k-mesh

J. VV. Zwanzige

Computational Framework

Homogeneous electric fields

Convergence with mesh size for Si.

$$\mathbf{P}=\chi\mathbf{E}$$

 $\epsilon^{\infty} = 1 + 4\pi\chi$

Applications

J. W. Zwanzige

Computational Framework

Homogeneous electric fields

Polarization is computed as a function of applied field and fit to the form (SI units for polarization and field):

$$P_i = \epsilon_0 \chi_{ij}^{(1)} E_j + 2\epsilon_0 d_{ijk} E_j E_k,$$

21 / 26

Applications

Homogeneous electric fields

Second order susceptibilities

Compound	ϵ^{0}	ϵ^{∞}	$d_{123} \text{ pm/V}$
AIP (LDA)	10.26	8.01	21.5
(PBE)	10.09	7.84	23.2
(expt)	9.8	7.5	
AlAs (LDA)	11.05	8.75	32.7
(PBE)	10.89	8.80	38.8
(expt)	10.16	8.16	32
AISb (LDA)	12.54	11.17	98.3
(PBE)	12.83	11.45	103
(PBE + SO)		9.76	
(expt)	11.68	9.88	98

• High and low frequency susceptibility: $\chi_{\alpha\beta} = dP_{\alpha}/dE_{\beta}$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで 22 / 26

Application: MgO Dielectric

Computationa Framework

Homogeneous electric fields

Method	ϵ^{∞}				
PAW E-field, PBE	3.089				
PAW DFPT, LDA	3.057				
NCPP DFPT, LDA	3.063				
Expt	3.014				
N.B. in DFPT, $\frac{\partial^2 E}{\partial E_i \partial E_j} \Big _0$ is					
computed directly, without					
presence of a field.					

Photoelasticity

J. VV. Zwanzige

Computationa Framework

Homogeneous electric fields Inverse of dielectric tensor changed by stress or strain:

$$\Delta B_{ij} = p_{ijkl} \epsilon_{kl} = \pi_{ijkl} \sigma_{kl}$$

Compound	ϵ	P11	P21	P44
Si (LDA)	12.4	-0.106	0.015	-0.052
(PBE)	12.2	-0.112	0.010	-0.061
(expt)	11.7	-0.094	0.017	-0.051
C (LDA)	5.71	-0.263	0.0673	-0.160
(PBE)	5.79	-0.268	0.0643	-0.171
(expt)	5.65-5.7	-0.2440.42	0.042-0.27	-0.1720.162

Photoelasticity in oxides

J. W. Zwanzige

Computationa Framework

Homogeneous electric fields

Quantity	MgO	BaO	SnO
C ₁₁	325.8	158.3	111.7
C33			43.4
C ₁₂	98.8	46.8	95.0
C ₁₃			18.9
C44	162.5	35.7	30.4
C ₆₆			85.2
π_{11}	-0.980	0.990	-1.70
π_{33}			0.91
π_{12}	0.172	-0.176	2.19
π_{13}			6.20
π_{44}	-0.446	-1.26	2.31
π_{66}			0.97
ϵ_{11}^{∞}	3.04	4.27	8.67
ϵ_{33}^{∞}			7.04

J. W. Zwanziger

Computational Framework

Homogeneous electric fields

- \blacksquare Modern theory of polarization and finite electric fields
- NCPP, PAW, spinors, spin polarized systems
- Applications to linear and nonlinear electric susceptibility
- MANY thanks to Xavier Gonze, Marc Torrent, ABINIT development and theory community