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Computing the forces  
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Computing the forces (I) 
Born - Oppenheimer approximation    one finds the
 electronic ground state in the potential created by the nuclei.  

Consider a given configuration of nuclei  {      }. 
Usually it is NOT the equilibrium geometry.  

       (principle of virtual works) 

Forces can be computed by finite differences. 
Better approach : compute the response to a perturbation 

    
    What is the energy change ?  

Small parameter 

 

Fκ,α  = - ∂E
∂Rκ ,α R


κ{ }

Rκ

Rκ,α{ }  →  Rκ,α  + λδRκ,α{ }
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Computing the forces (II) 
To simplify, let’s compute the derivative of an electronic
 eigenvalue 

 Perturbation theory : Hellmann - Feynman theorem 

     is not needed ! 

Application to the derivative with respect to an atomic
 displacement : 

dεn
dλ

 = ψn
(0) dĤ
dλ

ψn
(0)

dψn
dλ

 

H  = T  + V ext {R} ⇒  ∂H

∂Rκ ,α
 = ∂V

 ext

∂Rκ ,α

 ∂εn
∂Rκ ,α

= ψn
∂Ĥ

∂Rκ,α
ψn = n(r) ∂V

 ext (r)
∂Rκ ,α

dr∫
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Generalisation to density functional theory 

Reminder : 

If change of atomic positions ... 

            (can be generalized to pseudopotential case) 

E[ψ i ] = ψ i T̂ ψ i
n
∑  + n(r)∫  Vext (r)dr + EHxc[n]

 
Vext (
r ) =  − Zk 'r −


Rk 'k '

∑

 

∂Vext (
r )

∂Rk,α
 = + Zk '

r −

Rk

2  . 
∂ r −


Rk

∂Rk,α
= - Zk '
r −

Rk

3  .  r −

Rk( )α

 

∂E
∂Rk,α

 = n(r ') ∂Vext (r ')
∂Rk,α

dr '  = −  n(r ')
r '−

Rk

3  . (r '−

Rk )α d

r '∫∫

Computing the forces (III) 
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Forces can be computed directly from the density !  
No need for additional work (like solving the Kohn-Sham eq. 
or self-consistency) - at variance with finite-difference 

Pseudopotentials instead of Coulomb potential 
    additional term, involving also wavefunctions ... 

... Needed for PW/PP approach 

If basis set depends on the atomic positions, and not complete 
    additional term (Pulay correction, or 
     IBSC, incomplete basis set correction) 
    ... Not needed for PW/PP approach 

 

∂E
∂Rk,α

 = n(r ') ∂Vext (r ')
∂Rk,α

dr '  = −  n(r ')
r '−

Rk

3  . (r '−

Rk )α d

r '∫∫

Computing the forces (IV) 



Analysis of simple iterative
 algorithms  
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Algorithmics : problems to be solved 
(1) Kohn - Sham equation 

Size of the system                 [2 atoms…    600 atoms…]  + vacuum ? 
Dimension of the vectors          300…         100 000…             (if planewaves) 
# of (occupied) eigenvectors       4…             1200… 

(2)  Self-consistency 

(3)  Geometry optimization 
Find the positions          of ions such that the forces         vanish 

 [ = Minimization of energy ] 

Current practice : iterative approaches 

−
1
2
∇2 +VKS(r)

⎡
⎣⎢

⎤
⎦⎥
ψ i (r) = εiψ i (r)

rj{ }G j{ }

� 

A x i = λix i

� 

x i

VKS(r) ψ i (r)

n(r)

Rκ{ } Fκ{ }
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The ‘steepest-descent’ algorithm 

=> Iterative algorithm.  
Choose a starting geometry, then a parameter       ,  
and iterately update the geometry, following the forces :   

Forces are gradients of the energy : moving the atoms 
along gradients is the steepest descent of the energy surface. 

� 

λ

Equivalent to the simple mixing algorithm  
of SCF (see later)  

� 

Rκ ,α
(n+1) = Rκ ,α

(n) + λFκ ,α
(n)
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Energy+forces around equilib. geometry  

Analysis of forces close to the equilibrium geometry,  
at which forces vanish, thanks to a Taylor expansion : 

Moreover, 

Vector and matrix notation 

Let us denote the equilibrium geometry as  

� 

Rκ ,α
*

� 

Rκ ,α
* →R*

� 

Rκ ,α →R

� 

Fκ ,α → F

� 

∂ 2EBO

∂Rκ ,α∂Rκ ',α ' Rκ ,α
*{ }

→H� 

∂Fκ ',α '
∂Rκ ,α

= − ∂ 2EBO

∂Rκ ,α∂Rκ ',α '

� 

Fκ ,α = − ∂EBO

∂Rκ ,α

(the Hessian) 

� 

Fκ ,α (Rκ ',α ' ) = Fκ ,α (Rκ ',α '
* ) + ∂Fκ ,α

∂Rκ ',α 'κ ',α '
∑

R*{ }
Rκ ',α ' −Rκ ',α '

*( ) +O Rκ ',α ' −Rκ ',α '
*( )2
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Steepest-descent : analysis (I) 

Analysis of this algorithm, in the linear regime : 

� 

Rκ ,α
(n+1) = Rκ ,α

(n) + λFκ ,α
(n)

� 

F(R) = F(R*) −H R −R*( ) +O R −R*( )2

� 

R(n+1) = R(n) + λF(n)

� 

R(n+1) −R*( ) = R(n) −R*( )− λH R(n) −R*( )

� 

R(n+1) −R*( ) = 1− λH( ) R(n) −R*( )
For convergence of the iterative procedure, the "distance" 
between trial geometry and equilibrium geometry must decrease.  
1)  Can we predict conditions for convergence ? 
2)  Can we make convergence faster ? 

Need to understand the action of  
the matrix (or operator)   

� 

1− λH
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What  are the eigenvectors and eigenvalues of           ?  

symmetric,  
positive definite matrix   

The coefficient of         is multiplied by 1-    hi 

� 

H

� 

H

� 

= ∂ 2EBO

∂Rκ ,α∂Rκ ',α ' Rκ ,α
*{ }

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

� 

Hf i = hi f i f i{ }
Discrepancy decomposed as  

� 

R(n) −R*( ) = ci
(n)

i
∑ f i

� 

R(n+1) −R*( ) = 1− λH( ) ci
(n)

i
∑ f i = ci

(n)

i
∑ 1− λhi( )f iand 

� 

f i
Iteratively : R(n) − R*( ) = ci

(0)

i
∑ 1− λhi( )(n) f i

λ

where        form a complete, orthonormal, basis set 

Steepest-descent : analysis (II) 
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Yes ! If       positive, sufficiently small ... 

positive definite   =>  all hi are positive 

Is it possible to have  |1-       hi|   <  1 , for all eigenvalues ? 

� 

H
� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

The size of the discrepancy decreases if  |1-      hi|   <  1  λ

λ

λ

Steepest-descent : analysis (III) 
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The maximum of all |1-      hi|  should be as small as possible. 
At the optimal value of       , what will be the convergence rate ? 
 ( = by which factor is reduced the worst component of                     ?  ) 

How to determine the optimal value of        ?  

As an exercise : suppose   h1 =   0.2 
        h2 =   1.0 
        h3 =   5.0 

=>  what is the best value of       ? 

+  what is the convergence rate  ? 
� 

R(n) −R*( )

Hint : draw the three functions  |1-       hi| as a function of       . Then, find 
the location of          where the largest of the three curves is the smallest.  

  Find the coordinates of this point. 

λ

λ
λ

λ

λ λ
λ

� 

R(n) −R*( ) = ci
(0)

i
∑ 1− λhi( )(n) f i

Steepest-descent : analysis (IV) 
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Minimise the maximum of |1-       hi|  

h1 =   0.2    |1-      .0.2|    optimum =>      = 5 
h2 =   1.0    |1-      . 1 |    optimum =>      =  1 
h3 =   5.0    |1-       . 5 |    optimum =>      = 0.2 

? 

  0.2                          1   

1 

h3 h2 
h1 

optimum          =   |1-      0.2|    =   |1-      5| 

   1-      . 0.2    =  -( 1-       .5) 

2 -       (0.2+5)=0   =>      = 2/5.2 

     =  1 -  2. (0.2 / 5.2)  

positive                  negative 

Only  ~ 8% decrease of the error, per iteration ! Hundreds of iterations will
 be needed to reach a reduction of the error by 1000 or more. 

λ

λ
λ
λ

λ
λ
λ
λ λ

λ λ

λ λ

µ

µ

λ

Note : the second eigenvalue does not play any role. 
The convergence is limited by the extremal eigenvalues : if the parameter is too large, the
 smallest eigenvalue will cause divergence, but for that small parameter, the largest
 eigenvalue lead to slow decrease of the error... 

Steepest-descent : analysis (V) 
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The condition number 
In general,          opt  =  2 / (hmin + hmax) 

            opt  =  2 / [1+ (hmax/hmin)] - 1  =  [(hmax/hmin) -1] / [(hmax/hmin) +1] 

Perfect if hmax  =   hmin .  Bad if hmax >>  hmin .  
hmax/hmin called the "condition" number.  A problem is "ill-conditioned" if the 
condition number is large.  It does not depend on the intermediate eigenvalues. 

Suppose we start from a configuration with forces on the order of 1 Ha/Bohr, and  
we want to reach the target 1e-4 Ha/Bohr. The mixing parameter is optimal. 
How many iterations are needed ? 
For a generic decrease factor                   , with "n" the number of iterations. 

� 

F(n) ≈ hmax hmin −1
hmax hmin +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n

F(0)

� 

Δ ≈ hmax hmin −1
hmax hmin +1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
n

� 

n ≈ ln hmax hmin +1
hmax hmin −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
−1

lnΔ ≈ 0.5 hmax hmin( )ln 1
Δ

(The latter approximate  equality suppose a large condition number) 

µ
λ

Δ
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Analysis of self-consistency 

Natural iterative methodology   (KS : in  =>  out) :  

Which quantity plays the role of a force, that should vanish at the solution  ? 
 The difference                                        (generic name : a "residual") 

Simple mixing algorithm  
( ≈ steepest - descent ) 

Analysis ... 

Like the steepest-descent algorithm, this leads to the
 requirement to minimize |1-     hi| where hi  are eigenvalues of  

(actually, the dielectric matrix) 

vKS(r) ψ i (r)

n(r) vin (r)→ψ i (r)→ n(r)→ vout (r)

vout (r) − vin (r)

� 

vin
(n+1) = vin

(n) +λ vout
(n) − vin

(n)( )

� 

vout v in[ ] = vout v
*[ ] + δvoutδvin

v in − v
*( )

� 

H

� 

δvout
δvin

λ
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Variational (minimum) principle for  
the eigenfunctions/eigenvalues 

� 

ˆ H ψ i = εi ψ iOr, using Dirac notations : 

Lowest eigenfunction can be found by a minimum principle 
for the expectation value of the eigenenergy  

� 

min ψ0
T ˆ H ψ0

T = ε0
Tunder constraint  

� 

ψ0
T ψ0

T =1

Lowest eigenvectors can be found by a minimum principle 
for the expectation value of the sum of eigenenergies  

� 

min ψ i
T ˆ H ψ i

T

i

N

∑ = εi
T

i

N

∑ under constraints  

� 

ψ i
T ψ j

T =δij

  

� 

− 1
2
∇ 2 + vKS(

 
r )

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ψ i(
 
r ) = εiψ i(

 
r )

(T stands for "trial") 
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Finding eigenfunctions   

2) Iterative techniques : better adapted to electronic structure ! 
•  Might focus only on the lowest eigenstates   (= # bands Nbd) 
•  TCPU scales as  Nbd  *  T (          ) 

 In particular, for plane waves, or a discretized representation 
 on a grid, the CPU time needed to apply the Hamiltonian to a
 wavefunction does not scale like a matrix-vector product Nbasis x
 Nbasis, but like Nbasis  or Nbasis log Nbasis 

Ĥ ϕ

Label the lowest energy state as i=0,   
then states with increasing energy,  i = 1, i = 2, i = 3 …   

1) Direct methods : in finite basis (planewaves, mesh points, local orbitals ...) 
  an Hamiltonian is nothing else than a matrix, that can be treated by 
  direct methods developed by numericians (e.g. Choleski-Householder) 
•  H  matrix  Nbasis x Nbasis 
•  TCPU  scales as  N3

basis 
•  Deliver all eigenvalues and eigenvectors   i =  0 … (Nbasis -1) 

� 

ˆ H ψ i = εi ψ i
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                                                    , and apply iteratively the operator.  
At the end (or during the procedure, to avoid divergence),  
we renormalize the vector.  

The component with the largest           increases the most rapidly. 

After renormalisation, 

  Only the component with maximal eigenvalue will survive ! 

εi

The power method 

� 

ˆ H ψ i = εi ψ i

Suppose we want to find the eigenvector associated with the largest 
eigenvalue of  

We start from a trial vector  

� 

ψT

Analysis : 

� 

ψT = ci
(0)

i
∑ ψ i

� 

ψ (1) = ˆ H ψT = ci
(0)εi

i
∑ ψ i

� 

ψ (2) = ˆ H 2 ψT = ci
(0)εi

2

i
∑ ψ i

... 

� 

n→∞
lim ψ (n ) = ci

(0) εi
n

εmax
n

i
∑ ψ i



Advanced  
iterative algorithms  
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How to do a better job ? 

The residual vector is the nul vector at convergence in all three cases. 

Simple mixing 
Steepest descent           very primitive algorithms 
Power + shift 

The information about previous iterations is completely ignored 
We already know several vector/residual pairs  
We should try to use them !  

1) Take advantage of the history 

2) Decrease the condition number  

� 

v(n)→ v(n+1)

� 

v(n), r(n )( )

� 

R→ F

� 

vin → vout − vin

� 

ψT →
ε = ψT ˆ H  ψT

R = ˆ H - ε( ) ψT

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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Minimisation of the residual (I) 

Excellent strategy : select the  sp such as to minimize the norm of  
residual  (RMM =residual minimisation method - Pulay).  
Then mix part of the predicted residual to the predicted vector.  

Suppose we know : 

Find the best v  that can be obtained by combining the latest 
one with its differences with other v(p) .  

Equivalent to 

What is the residual associated with  v , if we make a linear approximation ? 

=>    New residual is a linear combination of the old ones,  
 with same coefficients as those of the potential. 

gives for p=1, 2 ... n 

with 
� 

v(p)

� 

r(p)

� 

v = spv
(p)

p=1

n

∑

� 

1= sp
p=1

n

∑ (like a normalisation) 

r = H v-v*( ) = H spv
(p)

p=1

n

∑ − sp
p=1

n

∑
⎛

⎝⎜
⎞

⎠⎟
v*

⎛

⎝
⎜

⎞

⎠
⎟

� 

= sp v
(p) − v*( )

p=1

n

∑
⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ = spH v(p) − v*( )

p=1

n

∑ = spr
(p)

p=1

n

∑
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Characteristics of the RMM method : 
(1) it takes advantage of the whole history 
(2) it makes a linear hypothesis 
(3) one needs to store all previous vectors and residuals 
(4) it does not modify the condition number   

Point (3) : memory problem if all wavefunctions are concerned, and  
the basis set is large (plane waves, or discretized grids).  
Might sometimes also be a problem for potential-residual pairs,  
represented on grids, especially for a large number of iterations.  
No problem of memory for geometries and forces. 

Simplified RMM method : Anderson's method, where only 
two previous pairs are kept. 

(D.G. Anderson, J. Assoc. Comput. Mach. 12, 547 (1964)) 

Minimisation of the residual (II) 
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Modify the condition number (I)  
Back to the optimization of geometry, with the linearized 
relation between forces, hessian and nuclei configuration : 

� 

F(R) = -H R -R*( )
Steepest-descent : 

giving 

Now, suppose an approximate inverse Hessian 

� 

H-1( )approx
Then, applying 

� 

H-1( )approx on the forces, and moving the nuclei 

along these modified forces gives 

� 

R(n+1) = R(n) +λ H-1( )approx F(n)
The difference between trial configuration and equilibrium configuration, 
in the linear approximation, behaves like   

� 

R(n +1) - R*( ) = 1 -  λ H-1( )approx
H⎛ 

⎝ 
⎜ ⎞ 

⎠ 
⎟ R(n) - R*( )

� 

R(n+1) = R(n) + λF(n)

� 

R(n+1) −R*( ) = 1− λH( ) R(n) −R*( )
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� 

F(R) = -H R -R*( )
� 

R(n+1) = R(n) +λ H-1( )approx F(n)

R(n+1)-R*( )= 1 - λ H-1( )
approx

H( ) R(n)-R*( )
Notes : 1) If approximate inverse Hessian perfect, optimal 

 geometry is reached in one step, with       =1.  
 Steepest-descent NOT the best direction. 

  2) Non-linear effects not taken into account. For geometry 
 optimization, might be quite large. Even with 
 perfect hessian, need 5-6 steps to optimize a water molecule. 
 3) Approximating inverse hessian by a multiple 
 of the unit matrix is equivalent to changing the         value. 
 4) Eigenvalues and eigenvectors of 
 govern the convergence : the condition number can be changed. 
                 often called a "pre-conditioner". 
 5) Generalisation to other optimization problems is trivial.  
 (The Hessian is referred to as the Jacobian if it is not symmetric.) 

� 

H-1( )approx H

� 

H-1( )approx

λ

λ

Modify the condition number (II)  
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Selfconsistent determination of the Kohn-Sham potential :  

 Jacobian = dielectric matrix.  
 Lowest eigenvalue close to 1.   

  Largest eigenvalue : 
 =  1.5 ... 2.5  for small close-shell molecules, and small unit cell solids 
 (Simple mixing will sometimes converge with parameter set to 1 !)  
 = the macroscopic dielectric constant (e.g. 12 for silicon), 
 forlarger close-shell molecules and large unit cell insulators,   
 = diverge for large-unit cell metals, or open-shell molecules ! 

 Model dielectric matrices known for rather homogeneous systems.  
 Knowledge of approx. macroscopic dielectric constant 
   => efficient preconditioner 
 Work in progress for inhomogeneous systems  
   (e.g. metals/vacuum systems). 

Approximate Hessian can be generated on a case-by-case basis. 

Modify the condition number (III)  
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The history  

Approximate Hessian can be improved by using the history.  

Large class of methods :  
- Broyden (quasi-Newton-type),  
- Davidson,  
- conjugate gradients,  
- Lanczos ...  
(although the three latter methods are not often presented in this way !).  


