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• Quantum treatment for electrons →  Kohn-Sham equation 
 
 
 
 

• Classical treatment for nuclei →  Newton equation

Born-Oppenheimer approximation
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• The matrix of interatomic force constants (IFCs) is defined as 
 

• Its Fourier transform (using translational invariance) 
 
 
allows one to compute phonon frequencies and eigenvectors as 
solutions of the following generalized eigenvalue problem:

Phonons
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Example: Diamond

5

Theory vs. Experiment 
[X. Gonze, GMR, and R. Caracas, Z. Kristallogr. 220, 458 (2000)]
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Total energy derivatives

• In fact, many physical properties are derivatives of the total 
energy (or a suitable thermodynamic potential) with respect to 
external perturbations. 

• Possible perturbations include: 
★ atomic displacements, 
★ expansion or contraction of the primitive cell, 
★ homogeneous external field (electric or magnetic), 
★ alchemical change 
★ ...

6
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Total energy derivatives

• Related derivatives of the total energy (Eel + Eion) 
★ 1st order: forces, stress, dipole moment, ...       
★ 2nd order: dynamical matrix, elastic constants, dielectric      

 susceptibility, Born effective charge tensors, 
 piezoelectricity, internal strains 

★ 3rd order: non-linear dielectric susceptibility, phonon-phonon       
 interaction, Grüneisen parameters, ... 

• Further properties can be obtained by integration over phononic 
degrees of freedom (e.g., entropy, thermal expansion, ...)

7
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Total energy derivatives

• These derivatives can be obtained from 
★ direct approaches: 
■finite differences (e.g. frozen phonons) 
■molecular-dynamics spectral analysis methods 

★ perturbative approaches 

• The former have a series of limitations (problems with 
commensurability, difficulty to decouple the responses to 
perturbations of different wavelength, ...). On the other hand, the 
latter show a lot of flexibility which makes it very attractive for 
practical calculations. 

8
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Outline
Perturbation Theory 

Density Functional Perturbation Theory 

Atomic displacements and 
homogeneous electric field
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Outline
Perturbation Theory 

Density Functional Perturbation Theory 

Atomic displacements and 
homogeneous electric field
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• Let us assume that all the solutions are known for a reference 
system for which the one-body Schrödinger equation is: 

with the normalization condition: 

• Let us now introduce a perturbation of the external potential 
characterized by a small parameter λ: 

known at all orders.

Reference and perturbed systems
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• We now want to solve the perturbed Schrödinger equation: 

with the normalization condition:  

• Idea: all the quantities (X=H, εi, ψi) are written as a perturbation 
series with respect to the parameter λ :

Reference and perturbed systems
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• Starting from: 

and  inserting: 

we get:

Expansion of the Schrödinger equation
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• This can be rewritten as:

Expansion of the Schrödinger equation
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• Finally, we have that:

Expansion of the Schrödinger equation
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• Starting from: 

and  inserting: 

we get:

Expansion of the normalization condition
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• Finally, we have that 

Expansion of the normalization condition
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• Starting from the 1st order of the Schrödinger equation 

and premultiplying by           , we get: 

and thus, finally, we have the Hellman-Feynman theorem: 

• The 0th order wavefunctions are thus the only required ingredient 
to obtain the 1st order corrections to the energies.

1st order corrections to the energies
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• Starting from the 2nd order of the Schrödinger equation 

and premultiplying by           , we get: 

and thus, finally, we have:

2nd order corrections to the energies
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• Since the energies are real, we can write that: 

or, combining both equalities: 

• Using the expansion of the normalization condition at 1st order, 
we can finally write that: 

• To obtain the 2nd order corrections to the energies, the only 
required ingredients are the 0th and 1st order wavefunctions.

2nd order corrections to the energies
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• The 1st order of the Schrödinger equation 

can be rewritten gathering the terms containing           : 

producing the so-called Sternheimer equation. 

• In order to get           one would like to invert the 
operator, but it cannot be done as such since       is an eigenvalue 
of        . The problem can be solved by expressing the 1st order 
wavefunction as a linear combination of the 0th order ones: 

1st order corrections to the wavefunctions
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• We separate the 0th order wavefunctions into two subsets:  
★ those associated to        : 

(just           if the energy is non-degenerate)  
★ those that belong to the subspace that is orthogonal: j ∈ I⊥ 

• The Sternheimer equation can thus be rewritten as:

1st order corrections to the wavefunctions
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• Premultiplying by           with k ∈ I⊥, we get: 

and, thus:
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1st order corrections to the wavefunctions
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• Premultiplying by           with k ∈ I, we get: 

• For k = i, it is nothing but the Hellmann-Feynman theorem. 
But, it does not provide any information on the                     . 

• In fact, there is a gauge freedom that allows to choose them 
equal to zero. 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1st order corrections to the wavefunctions
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• Finally, we can write the so-called sum over states expression: 

which requires the knowledge of all the 0th order wavefunctions 
and energies. 

• Instead, if we define the projector  

we can rewrite the Sterheimer equation in that subspace:

1st order corrections to the wavefunctions
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• In this form, the singularity has disappeared and it can thus be 
inverted: 

and defining the Green’s function in the subspace      as:  

we can write: 

• This is the Green's function technique for dealing with the 
Sternheimer equation.

1st order corrections to the wavefunctions
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• The sum over states expression for the 1st order wavefunctions: 

can be inserted in the 2nd order corrections to the energies: 

 leading to:
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2nd order corrections to the energies
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• Alternatively, we can write that: 

and the perturbation expansion at the 2nd order gives: 

• It can be shown that the sum of the terms in a row or in column 
vanishes! Getting rid of the first row and the last column, we get 
another expression for the 2nd order corrections to the energies:

2nd order corrections to the energies
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• Actually, a number of other expressions exist for the 2nd order 
corrections to the energies. 

•  However, it can be demonstrated that this expression is 
variational in the sense that the 2nd order corrections to the 
energies can be obtained by minimizing it with respect to         : 
 
 
 
 

under the constraint that:

2nd order corrections to the energies
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• Starting from the 3rd order of the Schrödinger equation 

and premultiplying by           , we get:

3rd order corrections to the energies
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• Finally, we we can write: 

• This expression of the 3rd order corrections to the energies 
requires to know the wavefunctions up to the 2nd order.

3rd order corrections to the energies

31

!(3)i =⇥"(0)
i |H(3)|"(0)

i ⇤

+ ⇥"(0)
i |H(2)� !(2)i |"(1)

i ⇤

+ ⇥"(0)
i |H(1)� !(1)i |"(2)

i ⇤



CECAM Tutorial, Lyon, 12-16 may 2014

• Alternatively, we can write that: 

and the perturbation expansion at the 3rd order gives: 

• Again, the sum of the terms in a row or in column vanishes. So, 
getting rid of the first two rows and the last two columns, we get 
another expression that does not require to know the 2nd order 
wavefunctions :

3rd order corrections to the energies

32

⇤!i(" )|H(" )� #i(" )|!i(" )⌅= 0 ⇥"

⇥!(0)
i |H(0)� "(0)i |!(3)

i ⇤
+⇥!(0)

i |H(1)� "(1)i |!(2)
i ⇤+⇥!(1)

i |H(0)� "(0)i |!(2)
i ⇤

+⇥!(0)
i |H(2)� "(2)i |!(1)

i ⇤+⇥!(1)
i |H(1)� "(1)i |!(1)

i ⇤+⇥!(2)
i |H(0)� "(0)i |!(1)

i ⇤
+⇥!(0)

i |H(3)� "(3)i |!(0)
i ⇤+⇥!(1)

i |H(2)� "(2)i |!(0)
i ⇤+⇥!(2)

i |H(1)� "(1)i |!(0)
i ⇤+⇥!(3)

i |H(0)� "(0)i |!(0)
i ⇤= 0

!(3)i =⇥"(0)
i |H(3)|"(0)

i ⇤+ ⇥"(1)
i |H(1)� !(1)i |"(1)

i ⇤

+ ⇥"(0)
i |H(2)|"(1)

i ⇤+ ⇥"(1)
i |H(2)|"(0)

i ⇤



CECAM Tutorial, Lyon, 12-16 may 2014

• There are 4 different methods to get the 1st order wavefunctions: 
★ solving the Sternheimer equation directly, complemented by a 

condition derived from the normalization requirement 
★ using the Green’s function technique 
★ exploiting the sum over states expression 
★ minimizing the constrained functional for the 2nd order 

corrections to the energies 

• With these 1st order wavefunctions, both the 2nd and 3rd order 
corrections to the energies can be obtained. 

• More generally, the nth order wavefunctions give access to the 
(2n)th and (2n+1)th order energy [“2n+1” theorem].

Summary

33



CECAM Tutorial, Lyon, 12-16 may 2014

Outline
Perturbation Theory 

Density Functional Perturbation Theory 

Atomic displacements and 
homogeneous electric field

34



CECAM Tutorial, Lyon, 12-16 may 2014

• In DFT, one needs to minimize the electronic energy functional: 

in which the electronic density is given by:  

under the constraint that: 

• Alternatively, one can solve the reference Shrödinger equation: 

where the Hartree and exchange correlation potential is:

Reference system
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• The electronic energy functional to be minimized is: 

in which the electronic density is given by:  

under the constraint that: 

• Alternatively, the Shrödinger equation to be solved is: 

where the Hartree and exchange correlation potential is:

Perturbed system
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1st order of perturbation theory in DFT

• For the energy, it can be shown that: 

This is the equivalent of the Hellman-Feynman theorem for 
density-functional formalism. 

• For the wavefunctions, the constraint leads to:
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2nd order energy in DFPT

• For the energy, it can be shown that: 

with
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1st order wavefunctions in DFPT

• The 1st order wavefunctions can be obtained by minimizing: 

with respect to              under the constraint: 

• These can also be obtained by solving the Sternheimer equation:
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Higher orders in DFPT

• More generally, it easy to show that since there is a variational 
principle for the 0th order energy: 

non-variational expression can be obtained for higher orders: 

• But, this is not the best that can be done!
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• We assume that all wavefunctions are known up to (n-1)th order: 

• The variational property of the energy functional implies that: 

• Taking                                                  , we see that: 

★ if the wavefunctions are known up to (n-1)th order, 
the energy is know up to (2n-1)th order; 

★ if the wavefunctions are known up to nth order, 
the energy is know up to (2n+1)th order. 

• This is the “2n+1” theorem.

Higher orders in DFPT
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• Since the variational principle is also an extremal principle 
[the error is either > 0 → minimal principle, or 
                              < 0 → maximal principle], the leading missing 
term is also of definite sign (it is also an extremal principle):

Higher orders in DFPT
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• Similar expressions exist for mixed derivatives (related to two 
different perturbations j1 and  j2): 

• The extremal principle is lost but the expression is stationary: 
★ the error is proportional to the product of errors made in the 

1st order quantities for the first and second perturbations; 
★ if these errors are small, their product will be much smaller; 
★ however, the sign of the error is undetermined, unlike for the 

variational expressions.

Mixed derivatives in DFPT
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1. Ground state calculation: 

2. FOR EACH pertubation j1 DO 

use 

  
ENDDO 

3. FOR EACH pertubation pair {j1, j2} DO 

determine          using both                      (stationary expression)  

                          using just 
ENDDO 

4. Post-processing to get the physical properties from 

Order of calculation in DFPT
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Perturbations of the periodic solid

• Let us consider the case where the reference system is periodic: 

• It can be shown that if the perturbation is characterized by a 
wavevector q such that: 

all the responses, at linear order, will also be characterized by q:
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Perturbations of the periodic solid

• We define related periodic quantities: 

• In the equations of DFPT, only these periodic quantities appear: 
the phases                                  can be factorized.  

• The treatment of perturbations incommensurate with the 
unperturbed system  periodicity is mapped onto the original 
periodic system. 

• This is interesting for atomic displacements but more 
importantly for electric fields.
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Electronic dielectric permittivity tensor

• The dielectric permittivity tensor is the coefficient of 
proportionality between the macroscopic displacement field and 
the macroscopic electric field, in the linear regime: 
 
 

• At high frequencies of the applied field, the dielectric 
permittivity tensor only includes a contribution from the 
electronic polarization:
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Treatment of homogeneous electric fields

• When the perturbation is an electric field, we have: 

which breaks the periodic boundary conditions. 

• To obtain the 2nd order derivative of the energy: 

the following matrix elements need to be computed:
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Treatment of homogeneous electric fields

• These matrix elements can be determined writing that: 

which leads to the Sternheimer equation:
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• It is defined as the proportionality coefficient relating at linear 
order, the polarization per unit cell, created along the direction α, 
and the displacement along the direction α’ of the atoms 
belonging to the sublattice κ: 
 

• It also describes the linear relation between the force in the 
direction α’ on an atom κ and the macroscopic electric field 

• Both can be connected to the mixed 2nd order derivative of the 
energy with respect to uκα’ and Eα 

• Sum rule:

Born effective charge tensor
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Born effective charge tensor

• Model system: 
★ diatomic molecule: 
★ dipole moment related to static charge q(r):  𝒫(r)= q(r) r 

• Atomic polar charge Z*(r) such that ∂𝒫(r)= Z*(r)∂r 
★ purely covalent case: q(r)=0=Z*(r) 
★ purely ionic case:  q(r)=Q ≠ 0 ⇒Z*(r)=Q 
★ mixed ionic-covalent: ∂𝒫(r)= q(r)∂r + ∂q(r) r 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Static dielectric permittivity tensor

• The mode oscillator strength tensor is defined as 
 
 

• The macroscopic static (low-frequency) dielectric permittivity 
tensor is calculated by adding the ionic contribution to the 
electronic dielectric permittivity tensor:
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LO-TO splitting

• The macroscopic electric field that accompanies the collective 
atomic displacements at q → 0  can be treated separately:  
 

where the nonanalytical, direction-dependent term is: 
 

• The transverse modes are common to both C  ̃matrices but the 
longitudinal ones may be different, the frequencies are related by
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Example 1: Zircon (phonons)
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Example 1: Zircon (Born effective charges)

56

• M : anomalously large (esp. Z⊥)   →    PbZrO3, ZrO2 

• Si : smaller deviations (↗ and ↘)  →    SiO2 (α-quartz or stishovite) 

• O : strong anisotropy   →    SiO2 stishovite or TiO2 rutile  
        ↗ in the y-z plane (plane of the M-O bonds)    (rem: ≠ from SiO2 α-quartz  
        ↘ in the x direction      where 2 ↘ components) 

Interpretation:
• mixed ionic-covalent bonding 

• closer to stishovite than α-quartz in agreement with naive bond counting 
   for O atoms 

 Nominal: 
 M → +4    
 Si → +4 
 O → -2
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Example 1: Zircon (dielectric properties)

57

• due to the frequency factor, it is the lowest frequency mode that  
   contributes the most to ε0

• Sm and Zm are the largest for the lowest and highest frequency modes*

• this effect can be compensated by a lower frequency for hafnon [e.g. A2u(1)]

• Sm and Zm are smaller for HfSiO4 ← mass difference and Born effective charges*
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Example 2: Copper (thermodynamics)
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