CECAM Tutorial: "Dynamical, dielectric and magnetic properties of solids with ABINIT" Lyon, 12-16 may 2014

# Basics of density functional perturbation theory 

## Gian-Marco Rignanese

UCLUniversité catholique de Louvain


European Theoretical Spectroscopy Facility


Institute of Condensed Matter and Nanosciences, B-1348 Louvain-la-Neuve, Belgique

## Born-Oppenheimer approximation

- Quantum treatment for electrons $\rightarrow$ Kohn-Sham equation

$$
\begin{gathered}
E_{e l}[\rho]=\sum_{v}\left\langle\psi_{v}\right| T+V_{e x t}\left|\psi_{v}\right\rangle+E_{H x c}[\rho] \\
\rho(\mathbf{r})=\sum_{v} \psi_{v}^{*}(\mathbf{r}) \psi_{v}(\mathbf{r}) \\
{\left[-\frac{1}{2} \nabla^{2}+V_{e x t}(\mathbf{r})+V_{H x c}(\mathbf{r})\right] \psi_{i}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r})}
\end{gathered}
$$

- Classical treatment for nuclei $\rightarrow$ Newton equation

$$
\overbrace{\text { atom }}^{F_{\kappa \alpha}^{a}=-\left.\frac{\partial E_{t o t}}{\partial R_{\kappa \alpha}^{a}}\right|_{\{\mathbf{R}\}} ^{\text {unit cell }}=M_{\kappa} \frac{d^{2} R_{\kappa \alpha}^{a}}{d t^{2}}}=E_{t o t}=E_{\text {ion }}+E_{e l}
$$

## Harmonic approximation



$$
E_{\text {tot }}(\{\mathbf{u}\})=E_{\text {tot }}^{(0)}+\sum_{a \kappa \alpha} \sum_{a^{\prime} \kappa^{\prime} \alpha^{\prime}} \frac{1}{2}\left(\frac{\partial^{2} E_{\text {tot }}}{\partial u_{\kappa \alpha}^{a} \partial u_{\kappa^{\prime} \alpha^{\prime}}^{a^{\prime}}}\right) u_{\kappa \alpha}^{a} u_{\kappa^{\prime} \alpha^{\prime}}^{a^{\prime}}
$$

## Phonons

- The matrix of interatomic force constants (IFCs) is defined as

$$
C_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}\left(a, a^{\prime}\right)=\left(\frac{\partial^{2} E_{\text {tot }}}{\partial u_{\kappa \alpha}^{a} \partial u_{\kappa^{\prime} \alpha^{\prime}}^{a^{\prime}}}\right)
$$

- Its Fourier transform (using translational invariance)

$$
\tilde{C}_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}(\mathbf{q})=\sum_{a^{\prime}} C_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}\left(0, a^{\prime}\right) e^{i \mathbf{q} \cdot \mathbf{R}_{\mathbf{a}^{\prime}}}
$$

allows one to compute phonon frequencies and eigenvectors as solutions of the following generalized eigenvalue problem:

$$
\sum_{\kappa^{\prime} \alpha^{\prime}} \tilde{C}_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}^{(\mathbf{q}) U_{m \mathbf{q}}\left(\kappa^{\prime} \alpha^{\prime}\right)=} \begin{array}{ccc}
\substack{\text { phonon } \\
\text { displacement } \\
\text { pattern }} & \downarrow & \downarrow \\
& \text { masses } & \begin{array}{c}
\text { square of } \\
\text { phonon } \\
\text { frequencies }
\end{array}
\end{array}
$$

## Example: Diamond


[X. Gonze, GMR, and R. Caracas, Z. Kristallogr. 220, 458 (2000)]

## Total energy derivatives

- In fact, many physical properties are derivatives of the total energy (or a suitable thermodynamic potential) with respect to external perturbations.
- Possible perturbations include:
* atomic displacements,
$\star$ expansion or contraction of the primitive cell,
* homogeneous external field (electric or magnetic),
* alchemical change
* ...


## Total energy derivatives

- Related derivatives of the total energy $\left(E_{e l}+E_{i o n}\right)$
$\star 1^{\text {st }}$ order: forces, stress, dipole moment, ...
$\star 2^{\text {nd }}$ order: dynamical matrix, elastic constants, dielectric susceptibility, Born effective charge tensors, piezoelectricity, internal strains
$\star 3^{\text {rd }}$ order: non-linear dielectric susceptibility, phonon-phonon interaction, Grüneisen parameters, ...
- Further properties can be obtained by integration over phononic degrees of freedom (e.g., entropy, thermal expansion, ...)


## Total energy derivatives

- These derivatives can be obtained from

夫 direct approaches:

- finite differences (e.g. frozen phonons)
- molecular-dynamics spectral analysis methods
* perturbative approaches
- The former have a series of limitations (problems with commensurability, difficulty to decouple the responses to perturbations of different wavelength, ...). On the other hand, the latter show a lot of flexibility which makes it very attractive for practical calculations.


## Perturbation Theory

Density Functional Perturbation Theory
Atomic displacements and

## homogeneous electric field

## Outline

## Perturbation Theory

Density Functional Perturbation Theory
Atomic displacements and

## homogeneous electric field

## Reference and perturbed systems

- Let us assume that all the solutions are known for a reference system for which the one-body Schrödinger equation is:

$$
H^{(0)}\left|\psi_{i}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left|\psi_{i}^{(0)}\right\rangle
$$

with the normalization condition:

$$
\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(0)}\right\rangle=1
$$

- Let us now introduce a perturbation of the external potential characterized by a small parameter $\lambda$ :

$$
V_{e x t}(\lambda)=V_{e x t}^{(0)}+\lambda V_{e x t}^{(1)}+\lambda^{2} V_{e x t}^{(2)}+\cdots
$$

known at all orders.

## Reference and perturbed systems

- We now want to solve the perturbed Schrödinger equation:

$$
H(\lambda)\left|\psi_{i}(\lambda)\right\rangle=\varepsilon_{i}(\lambda)\left|\psi_{i}(\lambda)\right\rangle
$$

with the normalization condition:

$$
\left\langle\psi_{i}(\lambda) \mid \psi_{i}(\lambda)\right\rangle=1
$$

- Idea: all the quantities $\left(X=H, \varepsilon_{i}, \psi_{i}\right)$ are written as a perturbation series with respect to the parameter $\lambda$ :

$$
\begin{aligned}
& X(\lambda)=X^{(0)}+\lambda X^{(1)}+\lambda^{2} X^{(2)}+\lambda^{3} X^{(3)}+\cdots \\
& \text { with } X^{(n)}=\left.\frac{1}{n!} \frac{d^{n} X}{d \lambda^{n}}\right|_{\lambda=0}
\end{aligned}
$$

## Expansion of the Schrödinger equation

- Starting from:

$$
H(\lambda)\left|\psi_{i}(\lambda)\right\rangle=\varepsilon_{i}(\lambda)\left|\psi_{i}(\lambda)\right\rangle \quad \forall \lambda
$$

and inserting:

$$
\begin{aligned}
& H(\lambda)=H^{(0)}+\lambda H^{(1)}+\lambda^{2} H^{(2)}+\ldots \\
& \psi_{i}(\lambda)=\psi_{i}^{(0)}+\lambda \psi_{i}^{(1)}+\lambda^{2} \psi_{i}^{(2)}+\ldots \\
& \varepsilon_{i}(\lambda)=\varepsilon_{i}^{(0)}+\lambda \varepsilon_{i}^{(1)}+\lambda^{2} \varepsilon_{i}^{(2)}+\ldots
\end{aligned}
$$

we get:

$$
\begin{aligned}
& \left(H^{(0)}+\lambda H^{(1)}+\lambda^{2} H^{(2)}+\ldots\right)\left(\left|\psi_{i}^{(0)}\right\rangle+\lambda\left|\psi_{i}^{(1)}\right\rangle+\lambda^{2}\left|\psi_{i}^{(2)}\right\rangle+\ldots\right)= \\
& \left(\varepsilon_{i}^{(0)}+\lambda \varepsilon_{i}^{(1)}+\lambda^{2} \varepsilon_{i}^{(2)}+\ldots\right)\left(\left|\psi_{i}^{(0)}\right\rangle+\lambda\left|\psi_{i}^{(1)}\right\rangle+\lambda^{2}\left|\psi_{i}^{(2)}\right\rangle+\ldots\right)
\end{aligned}
$$

## Expansion of the Schrödinger equation

- This can be rewritten as:

$$
\begin{array}{lr}
H^{(0)}\left|\psi_{i}^{(0)}\right\rangle & \text { setting } \lambda=0 \\
+\lambda\left(H^{(0)}\left|\psi_{i}^{(1)}\right\rangle+H^{(1)}\left|\psi_{i}^{(0)}\right\rangle\right) & \text { deriving w.r.t. } \\
+\lambda^{2}\left(H^{(0)}\left|\psi_{i}^{(2)}\right\rangle+H^{(1)}\left|\psi_{i}^{(1)}\right\rangle+H^{(2)}\left|\psi_{i}^{(0)}\right\rangle\right) & \text { and setting } \lambda= \\
+\ldots= & \text { deriving twice } \\
\varepsilon_{i}^{(0)}\left|\psi_{i}^{(0)}\right\rangle & \text { w.r.t. } \lambda \text { and } \\
+\lambda\left(\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle\right) & \text { setting } \lambda=0 \\
+\lambda^{2}\left(\varepsilon_{i}^{(0)}\left|\psi_{i}^{(2)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(2)}\left|\psi_{i}^{(0)}\right\rangle\right) & \\
+\ldots &
\end{array}
$$

## Expansion of the Schrödinger equation

- Finally, we have that:

$$
H^{(0)}\left|\psi_{i}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left|\psi_{i}^{(0)}\right\rangle \quad 0^{\text {th }} \text { order }
$$

$$
H^{(0)}\left|\psi_{i}^{(1)}\right\rangle+H^{(1)}\left|\psi_{i}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle \quad 1^{\text {st }} \text { order }
$$

$$
\begin{aligned}
& H^{(0)}\left|\psi_{i}^{(2)}\right\rangle+H^{(1)}\left|\psi_{i}^{(1)}\right\rangle+H^{(2)}\left|\psi_{i}^{(0)}\right\rangle= \\
& \varepsilon_{i}^{(0)}\left|\psi_{i}^{(2)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(2)}\left|\psi_{i}^{(0)}\right\rangle \quad 2^{\text {nd }} \text { order }
\end{aligned}
$$

## Expansion of the normalization condition

- Starting from:

$$
\left\langle\psi_{i}(\lambda) \mid \psi_{i}(\lambda)\right\rangle=1 \quad \forall \lambda
$$

and inserting:

$$
\psi_{i}(\lambda)=\psi_{i}^{(0)}+\lambda \psi_{i}^{(1)}+\lambda^{2} \psi_{i}^{(2)}+\ldots
$$

we get:

$$
\begin{aligned}
& \left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(0)}\right\rangle \\
& +\lambda\left(\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)} \mid \psi_{i}^{(0)}\right\rangle\right) \\
& +\lambda^{2}\left(\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(2)}\right\rangle+\left\langle\psi_{i}^{(1)} \mid \psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(2)} \mid \psi_{i}^{(0)}\right\rangle\right) \\
& +\ldots=1
\end{aligned}
$$

## Expansion of the normalization condition

- Finally, we have that

$$
\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(0)}\right\rangle=1 \quad 0^{\text {th }} \text { order }
$$

$$
\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)} \mid \psi_{i}^{(0)}\right\rangle=0 \quad 1^{\text {st }} \text { order }
$$

$$
\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(2)}\right\rangle+\left\langle\psi_{i}^{(1)} \mid \psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(2)} \mid \psi_{i}^{(0)}\right\rangle=0 \quad 2^{\text {nd }} \text { order }
$$

## $1^{\text {st }}$ order corrections to the energies

- Starting from the $1^{\text {st }}$ order of the Schrödinger equation

$$
H^{(0)}\left|\psi_{i}^{(1)}\right\rangle+H^{(1)}\left|\psi_{i}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

and premultiplying by $\left\langle\psi_{i}^{(0)}\right|$, we get:
$\underbrace{\left\langle\psi_{i}^{(0)}\right| H^{(0)}\left|\psi_{i}^{(1)}\right\rangle}_{\varepsilon_{i}^{(0)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(1)}\right\rangle}+\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(1)} \underbrace{\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(0)}\right\rangle}_{1}$ and thus, finally, we have the Hellman-Feynman theorem:

$$
\varepsilon_{i}^{(1)}=\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

- The $0^{\text {th }}$ order wavefunctions are thus the only required ingredient to obtain the $1^{\text {st }}$ order corrections to the energies.


## $2^{\text {nd }}$ order corrections to the energies

- Starting from the $2^{\text {nd }}$ order of the Schrödinger equation

$$
\begin{array}{r}
H^{(0)}\left|\psi_{i}^{(2)}\right\rangle+H^{(1)}\left|\psi_{i}^{(1)}\right\rangle+H^{(2)}\left|\psi_{i}^{(0)}\right\rangle= \\
\varepsilon_{i}^{(0)}\left|\psi_{i}^{(2)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(2)}\left|\psi_{i}^{(0)}\right\rangle
\end{array}
$$

and premultiplying by $\left\langle\psi_{i}^{(0)}\right|$, we get:
$\varepsilon_{i}^{(0)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(2)}\right\rangle$

$$
\begin{aligned}
& \overbrace{\left\langle\psi_{i}^{(0)}\right| H^{(0)}\left|\psi_{i}^{(2)}\right\rangle+\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle=}^{\varepsilon_{i}^{(0)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(2)}\right\rangle+\varepsilon_{i}^{(1)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(2)} \underbrace{\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(0)}\right\rangle}_{1}} \\
& \text { and thus, finally, we have: }
\end{aligned}
$$

$$
\varepsilon_{i}^{(2)}=\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle
$$

## $2^{\text {nd }}$ order corrections to the energies

- Since the energies are real, we can write that:

$$
\begin{aligned}
\varepsilon_{i}^{(2)} & =\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle \\
& =\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle
\end{aligned}
$$

or, combining both equalities:

$$
\begin{aligned}
\varepsilon_{i}^{(2)}= & \left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle \\
& +\frac{1}{2}\left(\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle\right)
\end{aligned}
$$

- Using the expansion of the normalization condition at $1^{\text {st }}$ order, we can finally write that:

$$
\varepsilon_{i}^{(2)}=\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\frac{1}{2}\left(\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle\right)
$$

- To obtain the $2^{\text {nd }}$ order corrections to the energies, the only required ingredients are the $0^{\text {th }}$ and $1^{\text {st }}$ order wavefunctions.


## $11^{\text {st }}$ order corrections to the wavefunctions

- The $1^{\text {st }}$ order of the Schrödinger equation

$$
H^{(0)}\left|\psi_{i}^{(1)}\right\rangle+H^{(1)}\left|\psi_{i}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

can be rewritten gathering the terms containing $\left|\psi_{i}^{(1)}\right\rangle$ :

$$
\left(H^{(0)}-\varepsilon_{i}^{(0)}\right)\left|\psi_{i}^{(1)}\right\rangle=-\left(H^{(1)}-\varepsilon_{i}^{(1)}\right)\left|\psi_{i}^{(0)}\right\rangle
$$

producing the so-called Sternheimer equation.

- In order to get $\left|\psi_{i}^{(1)}\right\rangle$ one would like to invert the $\left(H^{(0)}-\varepsilon_{i}^{(0)}\right)$ operator, but it cannot be done as such since $\varepsilon_{i}^{(0)}$ is an eigenvalue of $H^{(0)}$. The problem can be solved by expressing the $1^{\text {st }}$ order wavefunction as a linear combination of the $0^{\text {th }}$ order ones:

$$
\left|\psi_{i}^{(1)}\right\rangle=\sum_{j} c_{i j}^{(1)}\left|\psi_{j}^{(0)}\right\rangle
$$

## $1^{\text {st }}$ order corrections to the wavefunctions

- We separate the $0^{\text {th }}$ order wavefunctions into two subsets:
$\star$ those associated to $\varepsilon_{i}^{(0)}: j \in I$ if $H^{(0)}\left|\psi_{j}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left|\psi_{j}^{(0)}\right\rangle$ (just $\left|\psi_{i}^{(0)}\right\rangle$ if the energy is non-degenerate)
$\star$ those that belong to the subspace that is orthogonal: $j \in I^{\perp}$

$$
\left|\psi_{i}^{(1)}\right\rangle=\sum_{j} c_{i j}^{(1)}\left|\psi_{j}^{(0)}\right\rangle=\sum_{j \in I} c_{i j}^{(1)}\left|\psi_{j}^{(0)}\right\rangle+\sum_{j \in I^{\perp}} c_{i j}^{(1)}\left|\psi_{j}^{(0)}\right\rangle
$$

- The Sternheimer equation can thus be rewritten as:

$$
\begin{aligned}
\left(H^{(0)}-\varepsilon_{i}^{(0)}\right)\left|\psi_{i}^{(1)}\right\rangle & =\sum_{j} c_{i j}^{(1)}\left(H^{(0)}-\varepsilon_{i}^{(0)}\right)\left|\psi_{j}^{(0)}\right\rangle \\
& =\sum_{j \in I^{\perp}} c_{i j}^{(1)}\left(\varepsilon_{j}^{(0)}-\varepsilon_{i}^{(0)}\right)\left|\psi_{j}^{(0)}\right\rangle \\
& =-\left(H^{(1)}-\varepsilon_{i}^{(1)}\right)\left|\psi_{i}^{(0)}\right\rangle
\end{aligned}
$$

## $11^{\text {st }}$ order corrections to the wavefunctions

- Premultiplying by $\left\langle\psi_{k}^{(0)}\right|$ with $k \in I^{\perp}$, we get:

$$
\begin{gathered}
\sum_{j \in I^{\perp}} c_{i j}^{(1)}\left(\varepsilon_{j}^{(0)}-\varepsilon_{i}^{(0)}\right) \underbrace{\left\langle\psi_{k}^{(0)} \mid \psi_{j}^{(0)}\right\rangle}_{\delta_{k j}}=-\left\langle\psi_{k}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle \\
/\left\langle\psi_{k}^{(0)} \mid \psi_{i}^{(0)}\right\rangle=0 \\
\text { since } k \in I^{\perp}
\end{gathered}
$$

and, thus:

$$
c_{i j}^{(1)}=\frac{1}{\varepsilon_{i}^{(0)}-\varepsilon_{j}^{(0)}}\left\langle\psi_{j}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle \text { for } j \in I^{\perp}
$$

## $1^{\text {st }}$ order corrections to the wavefunctions

- Premultiplying by $\left\langle\psi_{k}^{(0)}\right|$ with $k \in I$, we get:

$$
\begin{array}{r}
\sum_{j \in I^{\perp}} c_{i j}^{(1)}\left(\varepsilon_{j}^{(0)}-\varepsilon_{i}^{(0)}\right) \underbrace{\left\langle\psi_{k}^{(0)} \mid \psi_{j}^{(0)}\right\rangle}_{0}=-\left\langle\psi_{k}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle \\
\varepsilon_{k}^{(1)} \delta_{k i}=\left\langle\psi_{k}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle \quad \begin{array}{r}
\left\langle\psi_{k}^{(0)} \mid \psi_{i}^{(0)}\right\rangle=\delta_{k i} \text { since } k \in I
\end{array} ~
\end{array}
$$

- For $k=i$, it is nothing but the Hellmann-Feynman theorem. But, it does not provide any information on the $c_{i j}^{(1)}$ for $j \in I$.
- In fact, there is a gauge freedom that allows to choose them equal to zero.


## $1^{\text {st }}$ order corrections to the wavefunctions

- Finally, we can write the so-called sum over states expression:

$$
\left|\psi_{i}^{(1)}\right\rangle=\sum_{j \in I^{\perp}}\left|\psi_{j}^{(0)}\right\rangle \frac{1}{\varepsilon_{i}^{(0)}-\varepsilon_{j}^{(0)}}\left\langle\psi_{j}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

which requires the knowledge of all the $0^{\text {th }}$ order wavefunctions and energies.

- Instead, if we define the projector $P_{I^{\perp}}$ onto the subspace $I^{\perp}$ by:

$$
P_{I^{\perp}}=\sum_{j \in I^{\perp}}\left|\psi_{j}^{(0)}\right\rangle\left\langle\psi_{j}^{(0)}\right|
$$

we can rewrite the Sterheimer equation in that subspace:

$$
P_{I^{\perp}}\left(H^{(0)}-\varepsilon_{i}^{(0)}\right) P_{I^{\perp}}\left|\psi_{i}^{(1)}\right\rangle=-P_{I^{\perp}} H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

## $1^{\text {st }}$ order corrections to the wavefunctions

- In this form, the singularity has disappeared and it can thus be inverted:

$$
P_{I^{\perp}}\left|\psi_{i}^{(1)}\right\rangle=-\left[P_{I^{\perp}}\left(H^{(0)}-\varepsilon_{i}^{(0)}\right) P_{I^{\perp}}\right]^{-1} H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

and defining the Green's function in the subspace $I^{\perp}$ as:

$$
G_{I^{\perp}}(\varepsilon)=\left[P_{I^{\perp}}\left(\varepsilon-H^{(0)}\right) P_{I^{\perp}}\right]^{-1}
$$

we can write:

$$
P_{I^{\perp}}\left|\psi_{i}^{(1)}\right\rangle=G_{I^{\perp}}\left(\varepsilon_{i}^{(0)}\right) H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

- This is the Green's function technique for dealing with the Sternheimer equation.


## $2^{\text {nd }}$ order corrections to the energies

- The sum over states expression for the $1^{\text {st }}$ order wavefunctions:

$$
\left|\psi_{i}^{(1)}\right\rangle=\sum_{j \in I^{\perp}}\left|\psi_{j}^{(0)}\right\rangle \frac{1}{\varepsilon_{i}^{(0)}-\varepsilon_{j}^{(0)}}\left\langle\psi_{j}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
$$

can be inserted in the $2^{\text {nd }}$ order corrections to the energies:

$$
\varepsilon_{i}^{(2)}=\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\frac{1}{2}\left(\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle\right)
$$

leading to:

$$
\begin{aligned}
\varepsilon_{i}^{(2)}= & \left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle \\
& +\sum_{j \in I^{\perp}}\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{j}^{(0)}\right\rangle \frac{1}{\varepsilon_{i}^{(0)}-\varepsilon_{j}^{(0)}}\left\langle\psi_{j}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
\end{aligned}
$$

## $2^{\text {nd }}$ order corrections to the energies

- Alternatively, we can write that:

$$
\left\langle\psi_{i}(\lambda)\right| H(\lambda)-\varepsilon_{i}(\lambda)\left|\psi_{i}(\lambda)\right\rangle=0 \quad \forall \lambda
$$

and the perturbation expansion at the $2^{\text {nd }}$ order gives:
$\left\langle\psi_{i}^{(0)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(2)}\right\rangle$
$+\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle$
$+\left\langle\psi_{i}^{(0)}\right| H^{(2)}-\varepsilon_{i}^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(2)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(0)}\right\rangle=0$

- It can be shown that the sum of the terms in a row or in column vanishes! Getting rid of the first row and the last column, we get another expression for the $2^{\text {nd }}$ order corrections to the energies:

$$
\begin{aligned}
\varepsilon_{i}^{(2)}= & \left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle \\
& +\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle
\end{aligned}
$$

## $2^{\text {nd }}$ order corrections to the energies

- Actually, a number of other expressions exist for the $2^{\text {nd }}$ order corrections to the energies.
- However, it can be demonstrated that this expression is variational in the sense that the $2^{\text {nd }}$ order corrections to the energies can be obtained by minimizing it with respect to $\psi_{i}^{(1)}$ :

$$
\begin{aligned}
\varepsilon_{i}^{(2)}=\min _{\psi_{i}^{(1)}} & \left\{\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle\right. \\
& \left.+\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle\right\}
\end{aligned}
$$

under the constraint that:

$$
\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)} \mid \psi_{i}^{(0)}\right\rangle=0
$$

## $3^{\text {rd }}$ order corrections to the energies

- Starting from the $3^{\text {rd }}$ order of the Schrödinger equation

$$
\begin{aligned}
& H^{(0)}\left|\psi_{i}^{(3)}\right\rangle+H^{(1)}\left|\psi_{i}^{(2)}\right\rangle+H^{(2)}\left|\psi_{i}^{(1)}\right\rangle+H^{(3)}\left|\psi_{i}^{(0)}\right\rangle= \\
& \quad \varepsilon_{i}^{(0)}\left|\psi_{i}^{(3)}\right\rangle+\varepsilon_{i}^{(1)}\left|\psi_{i}^{(2)}\right\rangle+\varepsilon_{i}^{(2)}\left|\psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(3)}\left|\psi_{i}^{(0)}\right\rangle
\end{aligned}
$$

and premultiplying by $\left\langle\psi_{i}^{(0)}\right|$, we get:

$$
\begin{aligned}
& \begin{array}{l}
\langle\overbrace{i}^{(0)}| H^{(0)}\left|\psi_{i}^{(3)}\right\rangle+\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(2)}\right\rangle \\
\quad+\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(0)}\right| H^{(3)}\left|\psi_{i}^{(0)}\right\rangle \\
= \\
\quad \varepsilon_{i}^{(0)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(3)}\right\rangle+\varepsilon_{i}^{(1)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(2)}\right\rangle \\
\quad+\varepsilon_{i}^{(2)}\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(1)}\right\rangle+\varepsilon_{i}^{(3)} \underbrace{\left\langle\psi_{i}^{(0)} \mid \psi_{i}^{(0)}\right\rangle}_{1}
\end{array} \\
& \text { rial. Lyon. 12-16 may 2014 }
\end{aligned}
$$

## $3^{\text {rd }}$ order corrections to the energies

- Finally, we we can write:

$$
\begin{aligned}
\varepsilon_{i}^{(3)}= & \left\langle\psi_{i}^{(0)}\right| H^{(3)}\left|\psi_{i}^{(0)}\right\rangle \\
& +\left\langle\psi_{i}^{(0)}\right| H^{(2)}-\varepsilon_{i}^{(2)}\left|\psi_{i}^{(1)}\right\rangle \\
& +\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(2)}\right\rangle
\end{aligned}
$$

- This expression of the $3^{\text {rd }}$ order corrections to the energies requires to know the wavefunctions up to the $2^{\text {nd }}$ order.


## $3^{\text {rd }}$ order corrections to the energies

- Alternatively, we can write that:

$$
\left\langle\psi_{i}(\lambda)\right| H(\lambda)-\varepsilon_{i}(\lambda)\left|\psi_{i}(\lambda)\right\rangle=0 \quad \forall \lambda
$$

and the perturbation expansion at the $3^{\text {rd }}$ order gives:

$$
\begin{aligned}
& \left\langle\psi_{i}^{(0)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(3)}\right\rangle \\
& +\left\langle\psi_{i}^{(0)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(2)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(2)}\right\rangle \\
& +\left\langle\psi_{i}^{(0)}\right| H^{(2)}-\varepsilon_{i}^{(2)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(2)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(1)}\right\rangle \\
& +\left\langle\psi_{i}^{(0)}\right| H^{(3)}-\varepsilon_{i}^{(3)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(2)}-\varepsilon_{i}^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(2)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(3)}\right| H^{(0)}-\varepsilon_{i}^{(0)}\left|\psi_{i}^{(0)}\right\rangle=0
\end{aligned}
$$

- Again, the sum of the terms in a row or in column vanishes. So, getting rid of the first two rows and the last two columns, we get another expression that does not require to know the $2^{\text {nd }}$ order wavefunctions :

$$
\begin{aligned}
\varepsilon_{i}^{(3)}= & \left\langle\psi_{i}^{(0)}\right| H^{(3)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(1)}-\varepsilon_{i}^{(1)}\left|\psi_{i}^{(1)}\right\rangle \\
& +\left\langle\psi_{i}^{(0)}\right| H^{(2)}\left|\psi_{i}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)}\right| H^{(2)}\left|\psi_{i}^{(0)}\right\rangle
\end{aligned}
$$

## Summary

- There are 4 different methods to get the $1^{\text {st }}$ order wavefunctions:
$\star$ solving the Sternheimer equation directly, complemented by a condition derived from the normalization requirement
* using the Green's function technique
$\star$ exploiting the sum over states expression
$\star$ minimizing the constrained functional for the $2^{\text {nd }}$ order corrections to the energies
- With these $1^{\text {st }}$ order wavefunctions, both the $2^{\text {nd }}$ and $3^{\text {rd }}$ order corrections to the energies can be obtained.
- More generally, the $n^{\text {th }}$ order wavefunctions give access to the $(2 n)^{\text {th }}$ and $(2 n+1)^{\text {th }}$ order energy [" $2 \mathbf{n}+1$ " theorem].


## Outline

## Perturbation Theory

## Density Functional Perturbation Theory

Atomic displacements and

## homogeneous electric field

## Reference system

- In DFT, one needs to minimize the electronic energy functional:

$$
E_{e l}\left[\rho^{(0)}\right]=\sum_{i=1}^{N_{e}}\left\langle\psi_{i}^{(0)}\right| T+V_{e x t}^{(0)}\left|\psi_{i}^{(0)}\right\rangle+E_{H x c}^{(0)}\left[\rho^{(0)}\right]
$$

in which the electronic density is given by:

$$
\rho^{(0)}(\mathbf{r})=\sum_{i=1}^{N_{e}}\left[\psi_{i}^{(0)}(\mathbf{r})\right]^{*} \psi_{i}^{(0)}(\mathbf{r})
$$

under the constraint that:

$$
\left\langle\psi_{i}^{(0)} \mid \psi_{j}^{(0)}\right\rangle=\delta_{i j}
$$

- Alternatively, one can solve the reference Shrödinger equation:

$$
H^{(0)}\left|\psi_{i}^{(0)}\right\rangle=\left[-\frac{1}{2} \nabla^{2}+V_{e x t}^{(0)}+V_{H x c}^{(0)}\right]\left|\psi_{i}^{(0)}\right\rangle=\varepsilon_{i}^{(0)}\left|\psi_{i}^{(0)}\right\rangle
$$

where the Hartree and exchange correlation potential is:

$$
V_{H x c}^{(0)}(\mathbf{r})=\frac{\delta E_{H x c}^{(0)}\left[\rho^{(0)}\right]}{\delta \rho(\mathbf{r})}
$$

## Perturbed system

- The electronic energy functional to be minimized is:

$$
E_{e l}[\rho(\lambda)]=\sum_{i=1}^{N_{e}}\left\langle\psi_{i}(\lambda)\right| T+V_{e x t}(\lambda)\left|\psi_{i}(\lambda)\right\rangle+E_{H x c}[\rho(\lambda)]
$$

in which the electronic density is given by:

$$
\rho(\mathbf{r} ; \lambda)=\sum_{i=1}^{N_{e}} \psi_{i}^{*}(\mathbf{r} ; \lambda) \psi_{i}(\mathbf{r} ; \lambda)
$$

under the constraint that:

$$
\left\langle\psi_{i}(\lambda) \mid \psi_{j}(\lambda)\right\rangle=\delta_{i j}
$$

- Alternatively, the Shrödinger equation to be solved is:
$H(\lambda)\left|\psi_{i}(\lambda)\right\rangle=\left[-\frac{1}{2} \nabla^{2}+V_{e x t}(\lambda)+V_{H x c}(\lambda)\right]\left|\psi_{i}(\lambda)\right\rangle=\varepsilon_{i}(\lambda)\left|\psi_{i}(\lambda)\right\rangle$
where the Hartree and exchange correlation potential is:

$$
V_{H x c}(\mathbf{r} ; \lambda)=\frac{\delta E_{H x c}[\rho(\lambda)]}{\delta \rho(\mathbf{r})}
$$

CECAM Tutorial, Lyon, 12-16 may 2014

## $1^{\text {st }}$ order of perturbation theory in DFT

- For the energy, it can be shown that:

$$
E_{e l}^{(1)}=\sum_{i=1}^{N_{e}}\left\langle\psi_{i}^{(0)}\right|\left(T+V_{e x t}\right)^{(1)}\left|\psi_{i}^{(0)}\right\rangle+\left.\frac{d}{d \lambda} E_{H x c}\left[\rho^{(0)}\right]\right|_{\lambda=0}
$$

This is the equivalent of the Hellman-Feynman theorem for density-functional formalism.

- For the wavefunctions, the constraint leads to:

$$
\left\langle\psi_{i}^{(0)} \mid \psi_{j}^{(1)}\right\rangle+\left\langle\psi_{i}^{(1)} \mid \psi_{j}^{(0)}\right\rangle=0
$$

## $2^{\text {nd }}$ order energy in DFPT

- For the energy, it can be shown that:

$$
\begin{aligned}
E_{e l}^{(2)}= & \sum_{i=1}^{N_{e}}\left[\left\langle\psi_{i}^{(1)}\right|\left(T+V_{e x t}\right)^{(1)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(0)}\right|\left(T+V_{e x t}\right)^{(1)}\left|\psi_{i}^{(1)}\right\rangle\right] \\
& +\sum_{i=1}^{N_{e}}\left[\left\langle\psi_{i}^{(0)}\right|\left(T+V_{e x t}\right)^{(2)}\left|\psi_{i}^{(0)}\right\rangle+\left\langle\psi_{i}^{(1)}\right|\left(H-\varepsilon_{i}\right)^{(0)}\left|\psi_{i}^{(1)}\right\rangle\right] \\
& +\frac{1}{2} \iint \frac{\delta^{2} E_{H x c}\left[\rho^{(0)}\right]}{\delta \rho(\mathbf{r}) \delta \rho\left(\mathbf{r}^{\prime}\right)} \rho^{(1)}(\mathbf{r}) \rho^{(1)}\left(\mathbf{r}^{\prime}\right) d \mathbf{r} d \mathbf{r}^{\prime} \\
& +\left.\int \frac{d}{d \lambda} \frac{E_{H x c}\left[\rho^{(0)}\right]}{\delta \rho(\mathbf{r})}\right|_{\lambda=0} \rho^{(1)}(\mathbf{r}) d \mathbf{r}+\left.\frac{1}{2} \frac{d^{2}}{d \lambda^{2}} E_{H x c}\left[\rho^{(0)}\right]\right|_{\lambda=0}
\end{aligned}
$$

with

$$
\rho^{(1)}(\mathbf{r})=\sum_{i=1}^{N_{e}}\left(\left[\psi_{i}^{(1)}(\mathbf{r})\right]^{*} \psi_{i}^{(0)}(\mathbf{r})+\left[\psi_{i}^{(0)}(\mathbf{r})\right]^{*} \psi_{i}^{(1)}(\mathbf{r})\right)
$$

## $1^{\text {st }}$ order wavefunctions in DFPT

- The $1^{\text {st }}$ order wavefunctions can be obtained by minimizing:

$$
E_{e l}^{(2)}=E_{e l}^{(2)}\left[\left\{\psi_{i}^{(0)}\right\},\left\{\psi_{i}^{(1)}\right\}\right]
$$

with respect to $\left\{\psi_{i}^{(1)}\right\}$ under the constraint: $\left\langle\psi_{i}^{(0)} \mid \psi_{j}^{(1)}\right\rangle=0$

- These can also be obtained by solving the Sternheimer equation:

$$
\begin{gathered}
\left(\hat{H}^{(0)}-\varepsilon_{i}^{(0)}\right)\left|\psi_{i}^{(1)}\right\rangle=-\left(\hat{H}^{(1)}-\varepsilon_{i}^{(1)}\right)\left|\psi_{i}^{(0)}\right\rangle \\
H^{(1)}=\left(T+V_{e x t}\right)^{(1)}+\int \frac{\delta^{2} E_{H x c}\left[\rho^{(0)}\right]}{\delta \rho(\mathbf{r}) \delta \rho\left(\mathbf{r}^{\prime}\right)} \rho^{(1)}\left(\mathbf{r}^{\prime}\right) d \mathbf{r}^{\prime} \\
\varepsilon_{i}^{(1)}=\left\langle\psi_{i}^{(0)}\right| H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
\end{gathered}
$$

## Higher orders in DFPT

- More generally, it easy to show that since there is a variational principle for the $0^{\text {th }}$ order energy:

$$
E_{e l}^{(0)}=E_{e l}^{(0)}\left[\left\{\psi_{i}^{(0)}\right\}\right]
$$

non-variational expression can be obtained for higher orders:

$$
\begin{aligned}
& E_{e l}^{(1)}=E_{e l}^{(1)}\left[\left\{\psi_{i}^{(0)}\right\}\right] \\
& E_{e l}^{(2)}=E_{e l}^{(2)}\left[\left\{\psi_{i}^{(0)}\right\},\left\{\psi_{i}^{(1)}\right\}\right] \\
& E_{e l}^{(3)}=E_{e l}^{(3)}\left[\left\{\psi_{i}^{(0)}\right\},\left\{\psi_{i}^{(1)}\right\},\left\{\psi_{i}^{(2)}\right\}\right]
\end{aligned}
$$

$$
\cdots
$$

- But, this is not the best that can be done!


## Higher orders in DFPT

- We assume that all wavefunctions are known up to $(n-1)^{\text {th }}$ order:

$$
\bar{\psi}_{i}=\psi_{i}^{<n}+O\left(\lambda^{n}\right)=\psi_{i}^{(0)}+\lambda \psi_{i}^{(1)}+\cdots+\lambda^{n-1} \psi_{i}^{(n-1)}+O\left(\lambda^{n}\right)
$$

- The variational property of the energy functional implies that:

$$
E_{e l}\left[\left\{\psi_{\text {trial }}+O(\eta)\right\}\right]=E_{e l}\left[\left\{\psi_{\text {trial }}\right\}\right]+O\left(\eta^{2}\right)
$$

- Taking $\left\{\psi_{\text {trial }}\right\}=\left\{\psi_{i}^{<n}\right\}$ and $\eta=\lambda^{n}$, we see that:
$\star$ if the wavefunctions are known up to $(n-1)^{\text {th }}$ order, the energy is know up to $(2 n-1)^{\text {th }}$ order;
$\star$ if the wavefunctions are known up to $n^{\text {th }}$ order, the energy is know up to $(2 n+1)^{\text {th }}$ order.
- This is the " $2 \mathrm{n}+1$ " theorem.


## Higher orders in DFPT

- Since the variational principle is also an extremal principle [the error is either $>0 \rightarrow$ minimal principle, or
$<0 \rightarrow$ maximal principle], the leading missing term is also of definite sign (it is also an extremal principle):

$$
\begin{array}{ll}
E_{e l}^{(0)}=E_{e l}^{(0)}\left[\left\{\psi_{i}^{(0)}\right\}\right] & \text { variational w.r.t. }\left\{\psi_{i}^{(0)}\right\} \\
E_{e l}^{(1)}=E_{e l}^{(1)}\left[\left\{\psi_{i}^{(0)}\right\}\right] & \text { variational w.r.t. }\left\{\psi_{i}^{(1)}\right\} \\
E_{e l}^{(2)}=E_{e l}^{(2)}\left[\left\{\psi_{i}^{(0)}\right\},\left\{\psi_{i}^{(1)}\right\}\right] & \\
E_{e l}^{(3)}=E_{e l}^{(3)}\left[\left\{\psi_{i}^{(0)}\right\},\left\{\psi_{i}^{(1)}\right\}\right] & \text { variational w.r.t. }\left\{\psi_{i}^{(2)}\right\} \\
E_{e l}^{(4)}=E_{e l}^{(4)}\left[\left\{\psi_{i}^{(0)}\right\},\left\{\psi_{i}^{(1)}\right\},\left\{\psi_{i}^{(2)}\right\}\right] & \\
E_{e l}^{(5)}=E_{e l}^{(5)}\left[\left\{\psi_{i}^{(0)}\right\},\left\{\psi_{i}^{(1)}\right\},\left\{\psi_{i}^{(2)}\right\}\right] &
\end{array}
$$

## Mixed derivatives in DFPT

- Similar expressions exist for mixed derivatives (related to two different perturbations $\mathrm{j}_{1}$ and $\mathrm{j}_{2}$ ):

$$
E_{e l}^{j_{1} j_{2}}=E_{e l}^{j_{1} j_{2}}\left\{\psi_{i}^{(0)} ; \psi_{i}^{j_{1}} ; \psi_{i}^{j_{2}}\right\}
$$

- The extremal principle is lost but the expression is stationary:
$\star$ the error is proportional to the product of errors made in the $1^{\text {st }}$ order quantities for the first and second perturbations;
* if these errors are small, their product will be much smaller;
* however, the sign of the error is undetermined, unlike for the variational expressions.


## Order of calculation in DFPT

1. Ground state calculation: $V_{\text {ext }}^{(0)} \rightarrow \psi_{i}^{(0)}$ and $\rho^{(0)}$
2. FOR EACH pertubation $j_{1}$ DO
use $\psi_{i}^{(0)}$ and $\rho^{(0)}$
$V_{e x t}^{j_{1}} \rightarrow \psi_{i}^{j_{1}}$ and $\rho^{j_{1}}<\begin{aligned} & \text { minimize } 2^{\text {nd }} \text { order energy } \\ & \text { solve Sternheimer equation }\end{aligned}$

## ENDDO

3. FOR EACH pertubation pair $\left\{j_{1}, j_{2}\right\}$ DO
determine $E^{j_{1} j_{2}}$ using both $\psi_{i}^{j_{1}}$ and $\psi_{i}^{j_{2}}$ (stationary expression) using just $\psi_{i}^{j_{1}}$

ENDDO
4. Post-processing to get the physical properties from $E^{j_{1} j_{2}}$

## Outline

## Perturbation Theory

## Density Functional Perturbation Theory

Atomic displacements and

## homogeneous electric field

## Perturbations of the periodic solid

- Let us consider the case where the reference system is periodic:

$$
V_{e x t}^{(0)}\left(\mathbf{r}+\mathbf{R}_{a}\right)=V_{\text {ext }}^{(0)}(\mathbf{r})
$$

- It can be shown that if the perturbation is characterized by a wavevector $\mathbf{q}$ such that:

$$
V_{\text {ext }}^{(1)}\left(\mathbf{r}+\mathbf{R}_{a}\right)=e^{i \mathbf{q} \cdot \mathbf{R}_{a}} V_{\text {ext }}^{(1)}(\mathbf{r})
$$

all the responses, at linear order, will also be characterized by $\mathbf{q}$ :

$$
\begin{aligned}
& \rho^{(1)}\left(\mathbf{r}+\mathbf{R}_{a}\right)=e^{i \mathbf{q} \cdot \mathbf{R}_{a}} \boldsymbol{\rho}^{(1)}(\mathbf{r}) \\
& \psi_{i, \mathbf{k}, \mathbf{q}}^{(1)}\left(\mathbf{r}+\mathbf{R}_{a}\right)=e^{i \boldsymbol{q} \cdot \mathbf{R}_{a}} \psi_{i, \mathbf{k}, \mathbf{q}}^{(1)}(\mathbf{r})
\end{aligned}
$$

. . .

## Perturbations of the periodic solid

- We define related periodic quantities:

$$
\begin{aligned}
& \bar{\rho}^{(1)}(\mathbf{r})=e^{-i \mathbf{q} \cdot \mathbf{r}} \boldsymbol{\rho}^{(1)}(\mathbf{r}) \\
& u_{i, \mathbf{k}, \mathbf{q}}^{(1)}(\mathbf{r})=\left(N_{e} \Omega_{0}\right)^{1 / 2} e^{-i(\mathbf{k}+\mathbf{q}) \cdot \mathbf{R}} \psi_{i, \mathbf{k}, \mathbf{q}}^{(1)}(\mathbf{r})
\end{aligned}
$$

- In the equations of DFPT, only these periodic quantities appear: the phases $e^{-i \mathbf{q} \cdot \mathbf{r}}$ and $e^{-i(\mathbf{k}+\mathbf{q}) \cdot \mathbf{R}}$ can be factorized.
- The treatment of perturbations incommensurate with the unperturbed system periodicity is mapped onto the original periodic system.
- This is interesting for atomic displacements but more importantly for electric fields.


## Electronic dielectric permittivity tensor

- The dielectric permittivity tensor is the coefficient of proportionality between the macroscopic displacement field and the macroscopic electric field, in the linear regime:

$$
\begin{gathered}
\mathscr{D}_{\mathrm{mac}, \alpha}=\sum_{\alpha^{\prime}} \varepsilon_{\alpha \alpha^{\prime}} \mathscr{E}_{\mathrm{mac}, \alpha^{\prime}} \\
\varepsilon_{\alpha \alpha^{\prime}}=\frac{\partial \mathscr{D}_{\mathrm{mac}, \alpha}}{\partial \mathscr{E}_{\mathrm{mac}, \alpha^{\prime}}}=\delta_{\alpha \alpha^{\prime}}+4 \pi \frac{\partial \mathscr{P}_{\mathrm{mac}, \alpha}}{\partial \mathscr{E}_{\mathrm{mac}, \alpha^{\prime}}} .
\end{gathered}
$$

- At high frequencies of the applied field, the dielectric permittivity tensor only includes a contribution from the electronic polarization:

$$
\begin{aligned}
& \varepsilon_{\alpha \alpha^{\prime}}^{\infty}=\delta_{\alpha \alpha^{\prime}}-\frac{4 \pi}{\Omega_{0}} 2 E_{e l}^{\mathscr{E}_{\alpha}^{*} \mathscr{C}_{\alpha^{\prime}}} \\
& \sum_{\alpha \alpha^{\prime}} \hat{q}_{\alpha} \varepsilon_{\alpha \alpha^{\prime}}^{\infty} \hat{q}_{\alpha}^{\prime}{ }_{\alpha}^{\prime}=\frac{1}{\text { unit vector }^{\prime}}=\frac{1}{\varepsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q} \rightarrow 0)}
\end{aligned}
$$

## Treatment of homogeneous electric fields

- When the perturbation is an electric field, we have:

$$
V_{e x t}^{(1)}(\mathbf{r})=\mathscr{E} \cdot \mathbf{r}
$$

which breaks the periodic boundary conditions.

- To obtain the 2 nd order derivative of the energy:

$$
2 E_{e l}^{\mathscr{E}_{\alpha}^{*} \mathscr{E}_{\alpha^{\prime}}}=\int \rho^{\mathscr{E}_{\alpha^{\prime}}}(\mathbf{r}) r_{\alpha} d \mathbf{r}
$$

the following matrix elements need to be computed:

$$
\begin{aligned}
& \left.\qquad \underset{\uparrow}{\left\langle u_{c, \mathbf{k}}^{(0)}\right.}\left|r_{\alpha^{\prime}}\right| u_{v, \mathbf{k}}^{E_{\alpha}}\right\rangle \text { and }\left\langle u_{c, \mathbf{k}}^{E_{\alpha}}\right| r_{\alpha^{\prime}}\left|u_{v, \mathbf{k}}^{(0)}\right\rangle \\
& \text { conduction valence }
\end{aligned}
$$

## Treatment of homogeneous electric fields

- These matrix elements can be determined writing that:

$$
\begin{aligned}
\left(\varepsilon_{i, \mathbf{k}}^{(0)}-\varepsilon_{j, \mathbf{k}}^{(0)}\right)\left\langle u_{i, \mathbf{k}}^{(0)}\right| r_{\alpha}\left|u_{j, \mathbf{k}}^{(0)}\right\rangle & =\left\langle u_{i, \mathbf{k}}^{(0)}\right| H_{\mathbf{k} \mathbf{k}}^{(0)} r_{\alpha}-r_{\alpha} H_{\mathbf{k} \mathbf{k}}^{(0)}\left|u_{j, \mathbf{k}}^{(0)}\right\rangle \\
& =\left\langle u_{i, \mathbf{k}}^{(0)}\right|-i \frac{\partial H_{\mathbf{k} \mathbf{k}}^{(0)}}{\partial k_{\alpha}}\left|u_{j, \mathbf{k}}^{(0)}\right\rangle
\end{aligned}
$$

which leads to the Sternheimer equation:

$$
\begin{gathered}
P_{c}\left(H_{\mathbf{k} \mathbf{k}}^{(0)}-\varepsilon_{j, \mathbf{k}}^{(0)}\right) P_{c} r_{\alpha}\left|u_{j, \mathbf{k}}^{(0)}\right\rangle=-P_{c} i \frac{\partial H_{\mathbf{k} \mathbf{k}}^{(0)}}{\partial k_{\alpha}}\left|u_{j, \mathbf{k}}^{(0)}\right\rangle \\
P_{I^{\perp}}\left(H^{(0)}-\varepsilon_{i}^{(0)}\right) P_{I^{\perp}}\left|\psi_{i}^{(1)}\right\rangle=-P_{I^{\perp}} H^{(1)}\left|\psi_{i}^{(0)}\right\rangle
\end{gathered}
$$

DDK perturbation

## Born effective charge tensor

- It is defined as the proportionality coefficient relating at linear order, the polarization per unit cell, created along the direction $\alpha$, and the displacement along the direction $\alpha$ ' of the atoms belonging to the sublattice $\kappa$ :

$$
Z_{\kappa \alpha \alpha^{\prime}}^{*}=\left.\Omega_{0} \frac{\partial \mathscr{P}_{\operatorname{mac}, \alpha}}{\partial u_{\kappa \alpha^{\prime}}(\mathbf{q}=0)}\right|_{\mathscr{E}_{\alpha}=0}=\left.\frac{\partial F_{\kappa \alpha^{\prime}}}{\partial \mathscr{E}_{\alpha}}\right|_{u_{\kappa \alpha^{\prime}}=0}
$$

- It also describes the linear relation between the force in the direction $\alpha^{\prime}$ on an atom $\kappa$ and the macroscopic electric field
- Both can be connected to the mixed $2^{\text {nd }}$ order derivative of the energy with respect to $u_{\kappa \alpha^{\prime}}$ and $\mathrm{E}_{\alpha}$
- Sum rule: $\sum_{\kappa} Z_{\kappa \alpha \alpha^{\prime}}^{*}=0$


## Born effective charge tensor

- Model system:
$\star$ diatomic molecule:

$\star$ dipole moment related to static charge $q(r): \mathscr{P}(r)=q(r) r$
- Atomic polar charge $Z^{*}(r)$ such that $\partial \mathscr{P}(r)=Z^{*}(r) \partial r$
* purely covalent case: $\quad q(r)=0=Z^{*}(r)$
* purely ionic case:

$$
q(r)=Q \neq 0 \Rightarrow Z^{*}(r)=Q
$$

* mixed ionic-covalent:

$$
\partial \mathscr{P}(r)=q(r) \partial r+\partial q(r) r
$$



$$
\begin{aligned}
& Z^{*}(r)=q(r)+r \frac{\partial q(r)}{\partial r} \\
& Z_{\alpha \beta}^{*}(r)=q(r) \delta_{\alpha \beta}+r_{\alpha} \frac{\partial q(r)}{\partial r_{\beta}}
\end{aligned}
$$

## Static dielectric permittivity tensor

- The mode oscillator strength tensor is defined as

$$
S_{m, \alpha \alpha^{\prime}}=\left(\sum_{\kappa \beta} Z_{\kappa \alpha \beta}^{*} U_{m \mathbf{q}=0}^{*}(\kappa \beta)\right)\left(\sum_{\kappa \beta^{\prime}} Z_{\kappa \alpha^{\prime} \beta^{\prime}}^{*} U_{m \mathbf{q}=0}\left(\kappa \beta^{\prime}\right)\right)
$$

- The macroscopic static (low-frequency) dielectric permittivity tensor is calculated by adding the ionic contribution to the electronic dielectric permittivity tensor:

$$
\begin{aligned}
\varepsilon_{\alpha \alpha^{\prime}}(\omega) & =\varepsilon_{\alpha \alpha^{\prime}}^{\infty}+\frac{4 \pi}{\Omega_{0}} \sum_{m} \frac{S_{m, \alpha \alpha^{\prime}}}{\omega_{m}^{2}-\omega^{2}} \\
\varepsilon_{\alpha \alpha^{\prime}}^{0} & =\varepsilon_{\alpha \alpha^{\prime}}^{\infty}+\frac{4 \pi}{\Omega_{0}} \sum_{m} \frac{S_{m, \alpha \alpha^{\prime}}}{\omega_{m}^{2}}
\end{aligned}
$$

## LO-TO splitting

- The macroscopic electric field that accompanies the collective atomic displacements at $\mathbf{q} \rightarrow 0$ can be treated separately:

$$
\tilde{C}_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}(\mathbf{q} \rightarrow 0)=\tilde{C}_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}(\mathbf{q}=0)+\tilde{C}_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}^{\mathrm{NA}}(\mathbf{q} \rightarrow 0)
$$

where the nonanalytical, direction-dependent term is:

$$
\tilde{C}_{\kappa \alpha, \kappa^{\prime} \alpha^{\prime}}^{\mathrm{NA}}(\mathbf{q} \rightarrow 0)=\frac{4 \pi}{\Omega_{0}} \frac{\left(\sum_{\beta} q_{\gamma} Z_{\kappa \beta \alpha}^{*}\right)\left(\sum_{\beta}^{\prime} q_{\beta}^{\prime} Z_{\kappa^{\prime} \beta^{\prime} \alpha^{\prime}}^{*}\right)}{\sum_{\beta \beta^{\prime}} q_{\beta} \varepsilon_{\beta \beta^{\prime}}^{\infty} q_{\beta}^{\prime}}
$$

- The transverse modes are common to both $\tilde{C}$ matrices but the longitudinal ones may be different, the frequencies are related by

$$
\omega_{m}^{2}(\mathbf{q} \rightarrow 0)=\omega_{m}^{2}(\mathbf{q}=0)+\frac{4 \pi}{\Omega_{0}} \frac{\sum_{\alpha \alpha^{\prime}} q_{\alpha} S_{m, \alpha \alpha^{\prime}} q_{\alpha}^{\prime}}{\sum_{\alpha \alpha^{\prime}} q_{\alpha} \varepsilon_{\alpha \alpha^{\prime}}^{\infty} q_{\alpha}^{\prime}}
$$

## Example 1: Zircon (phonons)



## Example 1: Zircon (Born effective charges)



- M : anomalously large (esp. $Z_{\perp}$ )
- Si : smaller deviations ( $\nearrow$ and $\searrow$ )
- O : strong anisotropy
$\nearrow$ in the $y-z$ plane (plane of the M-O bonds)
$\searrow$ in the $x$ direction
$\rightarrow \quad \mathrm{PbZrO}_{3}, \mathrm{ZrO}_{2}$
$\rightarrow \quad \mathrm{SiO}_{2}$ ( $\alpha$-quartz or stishovite)
$\rightarrow \mathrm{SiO}_{2}$ stishovite or $\mathrm{TiO}_{2}$ rutile


## Interpretation:

- mixed ionic-covalent bonding
- closer to stishovite than $\alpha$-quartz in agreement with naive bond counting for O atoms


## Example 1: Zircon (dielectric properties)

|  | $\mathrm{HfSiO}_{4}$ |  | $\mathrm{ZrSiO}_{4}$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  | \\| | $\perp$ | \|| | $\perp$ |
| $\epsilon_{\infty}$ | 4.11 | 3.88 | 4.26 | 4.06 |
| $\Delta \epsilon_{1}$ | 4.93 | 4.38 | 5.90 | 5.16 |
| $\Delta \epsilon_{2}$ | 0.81 | 0.75 | 0.52 | 1.31 |
| $\Delta \epsilon_{3}$ | 0.80 | 0.35 | 0.85 | 0.05 |
| $\Delta \epsilon_{4}$ |  | 1.27 |  | 1.38 |
| $\epsilon_{0}$ | 10.65 | 10.63 | 11.53 | 11.96 |


|  | $\mathrm{HfSiO}_{4}$ |  | $\mathrm{ZrSiO}_{4}$ |  |
| :--- | ---: | ---: | ---: | ---: |
|  | $Z_{m}^{*}$ | $S_{m}$ | $Z_{m}^{*}$ | $S_{m}$ |
| $\mathrm{~A}_{2 u}(1)$ | 6.85 | 7.39 | 7.68 | 10.06 |
| $\mathrm{~A}_{2 u}(2)$ | 3.78 | 4.24 | 2.76 | 2.64 |
| $\mathrm{~A}_{2 u}(3)$ | 6.60 | 11.22 | 6.71 | 11.50 |
| $\mathrm{E}_{u}(1)$ | 5.93 | 4.05 | 6.79 | 5.91 |
| $\mathrm{E}_{u}(2)$ | 2.94 | 1.70 | 3.51 | 2.71 |
| $\mathrm{E}_{u}(3)$ | 1.69 | 0.91 | 0.28 | 0.12 |
| $\mathrm{E}_{u}(4)$ | 7.21 | 14.02 | 7.37 | 14.69 |

- $\mathrm{S}_{\mathrm{m}}$ and $\mathrm{Z}_{\mathrm{m}}^{*}$ are the largest for the lowest and highest frequency modes
- due to the frequency factor, it is the lowest frequency mode that contributes the most to $\varepsilon_{0}$
- $\mathrm{S}_{\mathrm{m}}$ and $\mathrm{Z}_{\mathrm{m}}^{*}$ are smaller for $\mathrm{HfSiO}_{4} \leftarrow$ mass difference and Born effective charges
- this effect can be compensated by a lower frequency for hafnon [e.g. $\mathrm{A}_{2 \mathrm{u}}(1)$ ]


## Example 2: Copper (thermodynamics)





- S. Baroni, P. Giannozzi \& A. Testa, Phys. Rev. Lett. 58, 1861 (1987)
- X. Gonze \& J.-P. Vigneron, Phys. Rev. B 39, 13120 (1989)
- X. Gonze, Phys. Rev. A 52, 1096 (1995)
- S. de Gironcoli, Phys. Rev. B 51, 6773 (1995)
- X. Gonze, Phys. Rev. B. 55, 10337 (1997)
- X. Gonze \& C. Lee, Phys. Rev. B. 55, 10355 (1997)
- S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

