
Interatomic force constants 
and phonon dispersion curves 

Philippe GHOSEZ 
Université de Liège, Belgium 

Philippe.Ghosez@ulg.ac.be


ABINIT Tutorial  

May 12-16, 2014 
CECAM - Lyon - France 
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2.  Dynamical matrix and phonon frequencies 

3.  Interatomic force constants in real space 

4.  Phonon dispersion curves 

5.  What can we do with that ? 

6.  Thermodynamical properties 



1. Energy derivatives and 
physical properties 

X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997) 
R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107 (2001) 



Energy functionals: 
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The energy functional minimized in terms of  
the electronic degrees of freedom within ABINIT is 

•  In zero field: 

The Born-Oppenheimer energy : 
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Energy functionals: 
•  In non-zero field: 
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The related functional * 

or the electric enthalpy 
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* R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107 (2001) 
I. Souza, J. Iniguez and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002) 



Energy expansion: 
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Various physical quantities are related to successive  
derivatives of Ee+i or Fe+i in terms of E and τκ=Rκ-Rκ

0  

Note : can be generalized to include strains → Fe+i[Rκ, E, η] 



Physical quantities: 
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Interatomic force constants (IFC) 
in real space 
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Physical quantities: 
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•  Atomic forces : 

•  Electric displacement field : 



2. Dynamical matrix and 
phonon frequencies 

X. Gonze, Phys. Rev. B 55, 10337 (1997) 
X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997) 



Equation of motion for the ions 
(for E = 0) 

•  Harmonic energy : 

•  Equation of motion 

•  Solution 
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Dynamical equation  
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Notations  
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•  Force constant matrix 

•  Dynamical matrix 

•  Phonon eigenvector 

•  Phonon eigendisplacements 
 (with M in emu) 

•  Phonon frequency 



Zone-center phonons (q → 0)  
(TO modes : E = 0, LO modes : D = 0): 

•  Force : 

•  Displacement field 

 Along q, D must be preserved : qα.Dα=0 
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LO-TO correction at Γ 
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Non-analytical term to be added 
to Cαβ(κ, κ’) to compute  

the LO-TO splitting  
in the limit of q → 0 



3. Interatomic force 
constants in real space 

X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997) 



Interatomic force constants 
•  If the dynamical matrix was known at any q  

•  Since the dynamical matrix is only known on a regular 
(lxmxn) grid, we can only approximate IFC in a box of 

(lxmxn) unit cells 



Range of the IFC 
•  Are the IFC in real space really short range ? 

LR


For materials with non-vanishing Z* 
Long-range Coulomb forces 

Short-range chemical forces  

Model interaction valid at large distances 
Estimated in real and reciprocal space from Z* and     . 

Isotropic: 

Dominant DD interaction  

Anisotropic: 

with 

€ 

ε∞



IFC in real space 

Decomposition provided by anaddb 

•  Substract the long-range DD part in recirpocal space 

•  Fourier transform the SR part on a finite grid 

•  Add back the DD part in real space 



4. Phonon dispersion 
curves 

X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997) 



Dynamical matrix at any q 
•  Start from the IFC in real space 

•   Fourier transform back the SR part to q-space 
    and add back the DD part  

•   Diagonalize the dynamical matrix at q 



Acoustic sum rule 
The crystal energy must be invariant under  

global translation of the whole crystal (ωAC=0).  

•  This imposes a constraint on the force constant matrix 
known as the acoustic sum rule (ASR) : 

•  This relation is slightly broken due to the use of a real 
space grid to evaluate the exchange-correlation energy. 

BaTiO3 

or 

LDA 
Teter psp 

ng 48 



Acoustic sum rule 
•   The ASR is restored using : 

•  The same “q=0 correction” used at all q 

•  This is equivalent to correct the “on-site” IFC in real 
space 



Summary : ABINIT 2nd DDB 
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4. What can we do with 
that ? 



Infrared and Raman spectra 
BiFeO3 – IR spectra BiFeO3 – Raman spectra 



Phonon dispersion curves 

Borissenko et al., J. Phys. Condens. Matter 25, 102201 (2013) 

α-quartz BiFeO3 



Dispersion curves of Bi 

LE. Diaz-Sanchez, A.H. Romero, X. Gonze, Phys. Rev. B 76, 104302 (2007) 

Only very old experimental 
data available 

     Yarnell et al, IBM J.Res. Dev. 1964 
     Smith, internal report Los Alamos 1967 

Full line DFPT without spin-orbit 

Full line DFPT with spin-orbit 

10-15% change due to  
Spin-orbit coupling 



Structural instabilities 

Structural instability :    Negative curvature 
     ω2<0 
     ω imaginary (unstable mode)

ω2<0 
Stable mode 

ω2<0 
Unstable mode 



Instability of stishovite under pressure  

SiO2 - stishovite 

Phonon softening under pressure 

Ch. Lee and X. Gonze, Phys. Rev. B 56, 7321 (1997)  

Ferroelastic transition from 
stishovite to rutile-type 

structure 



Ferroelectric instability of BaTiO3 

Paraelectric

ξ = 0 

Pup

ξ = +1 

Pdown

ξ = -1 

E Ec 
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ξ 1 -1 0 



Ferroelectric instability of BaTiO3 



Ferroelectric instability of BaTiO3 

Instability for correlated 
displacements only 

2-D instability in reciprocal space 
Chain of correlation in real space 

Ph. Ghosez, X. Gonze and J.-P. Michenaud.Ferroelectrics 206, 205-217 (1998). 



Ferroelectric instability of BaTiO3 
Cochran’s model:  
Competetion between SR and LR forces 

   

    <0                 >>0                  <<<0 

Ph. Ghosez, X. Gonze and J.-P. Michenaud, Europhys. Lett. 33, 713-718 (1996).  
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Strain induced ferroelectricity 

E. Bousquet, N. Spaldin and Ph. Ghosez, Phys. Rev. Lett. 104, 037601 (2010)  

SrO CaO MgO 

TOz 

TOx,y 

TOz TOx,y 

TOx,y 

BaO Role of epitaxial strain on  
rocksalt binary oxides 



FE and AFD instabilities of SrTiO3 

FE 

AFD 

AFD-R AFD-M 



Analysis of IFC 

Ph. Ghosez, E. Cockayne, U.V. Waghmare and K. M. Rabe, Phys. Rev. B 60, 836 (1999) 

Comparison of the IFC between 
different perovskites 



Analysis of distorted structure 



Analysis of distorted structure 



Analysis of distorted structure 

Good of bad agreement ? 



Analysis of distorted structure 

More relevant comparison between 
relaxed and experimental structure ! 



5. Thermodynamical 
properties 

Ch. Lee and X. Gonze, Phys. Rev. B 51, 8610 (1995) 
G.-M. Rignanese, J.-P. Michenaud and X. Gonze, Phys. Rev. B 53, 4488 (1996) 



Statistical physics : 
In the harmonic approximation, the vibrations of the lattice (also 
called phonons) can be treated as gas of independent particles. 
They obey the Bose-Einstein statistics : 

The internal energy of the boson gas can be calculated directly 
using the standard formula: 

 

Uphon = ω
0

ωmax

∫ n(ω ) + 1
2





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g(ω )dω

Energy of the harmonic oscillator Phonon density of states 

All vibrational contributions to thermodynamic properties, in the 
harmonic approximation, can be calculated in this manner.  



Phonon density of states (DOS) 

For each frequency channel,  
one counts the “number” of  
phonon modes 

α-quartz 

stishovite 



Thermodynamical properties 
•   Phonon DOS gives access to the vibrational 
contribution to various quantities: 



SiO2 α-quartz versus stishovite 

α-quartz 

stishovite 

stishovite 

α-quartz 

Ch. Lee and X. Gonze, Phys. Rev. B 51, 8610 (1995) 

Quartz


Si 

O

Stishovite




Thermal expansion 

To be computed from 
finite differences 

Grüneisen  
parameters : 

From X. Gonze 



Thermal expansion 

From X. Gonze 




