

ABINIT Tutorial

Interatomic force constants and phonon dispersion curves

Philippe GHOSEZ Université de Liège, Belgium

Philippe.Ghosez@ulg.ac.be

May 12-16, 2014 CECAM - Lyon - France

Outline:

- 1. Energy derivatives and functional properties
- 2. Dynamical matrix and phonon frequencies
- 3. <u>Interatomic force constants in real space</u>
- 4. <u>Phonon dispersion curves</u>
- 5. <u>What can we do with that ?</u>
- 6. <u>Thermodynamical properties</u>

1. Energy derivatives and physical properties

X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997) R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107 (2001)

Energy functionals:

The energy functional minimized in terms of the electronic degrees of freedom within ABINIT is

• In zero field:

The Born-Oppenheimer energy :

$$E_{e+i}[\mathbf{R}_{\kappa}] = \min_{\psi_{nk}} \left(E_{e+i}[\mathbf{R}_{\kappa}, \psi_{nk}] \right)$$

with

$$E_{e+i}[\mathbf{R}_{\kappa},\psi_{n\mathbf{k}}] = \underbrace{\left(T_{e}[\psi_{n\mathbf{k}}] + E_{H}[\psi_{n\mathbf{k}}] + E_{xc}[\psi_{n\mathbf{k}}] + E_{ei}[\mathbf{R}_{\kappa},\psi_{n\mathbf{k}}]\right)}_{E_{ei}[\mathbf{R}_{\kappa},\psi_{n\mathbf{k}}]} + U_{ii}[\mathbf{R}_{\kappa}]$$

Energy functionals:

- In non-zero field:
- The related functional *

$$F_{e+i}[\mathbf{R}_{\kappa}, \mathcal{E}] = \min_{\psi_{n\mathbf{k}}} \left(E_{e+i}[\mathbf{R}_{\kappa}, \psi_{n\mathbf{k}}] - \Omega_{0} \mathcal{E} \cdot \mathcal{P}[\psi_{n\mathbf{k}}] \right)$$

or the electric enthalpy

$$\mathscr{F}_{e+i}[\mathbf{R}_{\kappa},\mathcal{E}] = \min_{\psi_{n\mathbf{k}}} \left(E_{e+i}[\mathbf{R}_{\kappa},\psi_{n\mathbf{k}}] - \Omega_{0} \mathcal{E} \cdot \mathcal{P}[\psi_{n\mathbf{k}}] \right) - \frac{\Omega_{0}}{8\pi} \mathcal{E}^{2}$$

* R. W. Nunes and X. Gonze, Phys. Rev. B 63, 155107 (2001) I. Souza, J. Iniguez and D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002)

Energy expansion:

Various physical quantities are related to successive derivatives of E_{e+i} or \mathcal{F}_{e+i} in terms of \mathcal{E} and $\tau_{\kappa} = R_{\kappa} - R_{\kappa}^{0}$

$$\begin{aligned} \mathscr{F}_{e+i}^{-}[\mathbf{R}_{\kappa},\mathscr{E}] &= \mathscr{F}_{e+i}^{-}[\mathbf{R}_{\kappa}^{0},0] \\ &+ \sum_{\alpha} \frac{\partial \mathscr{F}_{e+i}}{\partial \mathscr{E}_{\alpha}} \mathscr{E}_{\alpha} + \sum_{\alpha} \sum_{\kappa} \frac{\partial \mathscr{F}_{e+i}}{\partial \tau_{\kappa\alpha}} \tau_{\kappa\alpha} \\ &+ \frac{1}{2} \sum_{\alpha\beta} \frac{\partial \mathscr{F}_{e+i}}{\partial \mathscr{E}_{\alpha} \partial \mathscr{E}_{\beta}} \mathscr{E}_{\alpha} \mathscr{E}_{\beta} + \sum_{\alpha\beta} \sum_{\kappa} \frac{\partial \mathscr{F}_{e+i}}{\partial \tau_{\kappa\alpha} \partial \mathscr{E}_{\beta}} \tau_{\kappa\alpha} \mathscr{E}_{\beta} \\ &+ \frac{1}{2} \sum_{\alpha\beta} \sum_{\kappa\kappa'} \frac{\partial \mathscr{F}_{e+i}}{\partial \tau_{\kappa\alpha} \partial \tau_{\kappa'\beta}} \tau_{\kappa\alpha} \tau_{\kappa'\beta} + \dots \end{aligned}$$

<u>Note</u> : can be generalized to include strains $\rightarrow \mathcal{F}_{e+i}[R_{\kappa}, \mathcal{E}, \eta]$

Physical quantities:

$$\mathcal{F}_{e+i}[\mathbf{R}_{\kappa},\mathcal{E}] = \mathcal{F}_{e+i}[\mathbf{R}_{\kappa}^{0},0]$$

$$-\Omega_{0}\sum_{\alpha}\mathcal{P}_{\alpha}^{s}\mathcal{E}_{\alpha} - \sum_{\alpha}\sum_{\kappa}\mathcal{F}_{\alpha}^{0}\tau_{\kappa\alpha}$$

$$-\frac{\Omega_{0}}{8\pi}\sum_{\alpha\beta}\mathcal{E}_{\alpha\beta}^{s}\mathcal{E}_{\alpha}\mathcal{E}_{\beta} - \sum_{\alpha\beta}\sum_{\kappa}\mathcal{Z}_{\kappa,\alpha\beta}^{*}\tau_{\kappa\alpha}\mathcal{E}_{\beta}$$

$$+\frac{1}{2}\sum_{\alpha\beta}\sum_{\kappa\kappa'}\mathcal{O}_{\alpha\beta}(\kappa,\kappa')\tau_{\kappa\alpha}\tau_{\kappa'\beta}$$

$$\downarrow$$
Interatomic force constants (IFC) in real space

Physical quantities:

• Atomic forces :

$$F_{\kappa\alpha}[\mathbf{R}_{\kappa},\mathcal{E}] = -\frac{d\mathscr{F}_{e+i}[\mathbf{R}_{\kappa},\mathcal{E}]}{d\tau_{\kappa\alpha}}$$
$$= F_{\kappa\alpha}^{0} + \sum_{\beta} Z_{\kappa,\alpha\beta}^{*} \mathcal{E}_{\beta} - \sum_{\beta} \sum_{\kappa'} C_{\alpha\beta}(\kappa,\kappa')\tau_{\kappa'\beta}$$
$$= 0$$

• Electric displacement field :

$$\mathcal{D}_{\beta}[\mathbf{R}_{\kappa}, \mathcal{E}] = -\frac{4\pi}{\Omega_{0}} \frac{d\mathcal{P}_{e+i}[\mathbf{R}_{\kappa}^{0}, 0]}{d\mathcal{E}_{\beta}}$$
$$= 4\pi \left(\frac{\mathcal{P}_{\beta}^{s}}{=0} + \frac{1}{\Omega_{0}} \sum_{\alpha} \sum_{\kappa} Z_{\kappa,\alpha\beta}^{*} \tau_{\kappa\alpha} \right) + \sum_{\alpha} \varepsilon_{\alpha\beta}^{\infty} \mathcal{E}_{\alpha}$$

2. Dynamical matrix and phonon frequencies

X. Gonze, Phys. Rev. B 55, 10337 (1997) X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)

Equation of motion for the ions $(for \mathcal{E} = 0)$

• <u>Harmonic energy :</u>

$$\mathcal{F}_{e+i}[\mathbf{R}_{\kappa},\mathcal{E}] = \mathcal{F}_{e+i}[\mathbf{R}_{\kappa}^{0},0] + \frac{1}{2}\sum_{a\kappa\alpha}\sum_{b\kappa'\beta}C_{\alpha\beta}^{ab}(\kappa,\kappa')\tau_{\kappa\alpha}^{a}\tau_{\kappa'\beta}^{b}$$

Equation of motion

$$M_{\kappa} \frac{\partial^{2} \tau^{a}_{\kappa\alpha}}{\partial t^{2}} = F^{a}_{\kappa\alpha} = -\sum_{b\kappa'\beta} C^{ab}_{\alpha\beta}(\kappa,\kappa') \tau^{b}_{\kappa'\beta}$$

Solution

$$\tau^{a}_{\kappa\alpha}(t) = \eta_{mq}(\kappa\alpha) \ e^{i\mathbf{q}\cdot\mathbf{R}^{a}} \ e^{-i\omega_{mq}t}$$

Dynamical equation

$$-M_{\kappa}\omega_{mq}^{2}\eta_{mq}(\kappa\alpha) = -\sum_{\kappa'\beta} \underbrace{\left(\sum_{b} C_{\alpha\beta}^{ab}(\kappa,\kappa') e^{i\mathbf{q}\cdot(\mathbf{R}^{b}-\mathbf{R}^{a})}\right)}_{\tilde{C}_{\alpha\beta}^{q}(\kappa,\kappa') = \frac{1}{N}\sum_{ab} C_{\alpha\beta}^{ab}(\kappa,\kappa') e^{i\mathbf{q}\cdot(\mathbf{R}^{b}-\mathbf{R}^{a})}}$$

$$M_{\kappa}\omega_{mq}^{2} \underbrace{\eta_{mq}(\kappa\alpha)}_{\gamma_{mq}(\kappa\alpha)/\sqrt{M_{\kappa}}} = \sum_{\kappa'\beta} \underbrace{\tilde{C}_{\alpha\beta}^{q}(\kappa,\kappa')}_{\tilde{D}_{\alpha\beta}^{q}(\kappa,\kappa')\sqrt{M_{\kappa}M_{\kappa'}}} \underbrace{\eta_{mq}(\kappa'\beta)}_{\gamma_{mq}(\kappa'\beta)/\sqrt{M_{\kappa'}}}$$

$$\omega_{mq}^{2} \gamma_{mq}(\kappa \alpha) = \sum_{\kappa' \beta} \tilde{D}_{\alpha\beta}^{q}(\kappa, \kappa') \gamma_{mq}(\kappa' \beta)$$
Phonon
Phonon
Dynamical
Phonon
eigenvector

Notations

- Force constant matrix —
- Dynamical matrix —
- Phonon eigenvector

- Phonon eigendisplacements →
 (with M in emu)
- Phonon frequency

$$\begin{split} \tilde{C}_{\alpha\beta}^{\mathbf{q}}(\kappa,\kappa') &= \frac{\partial^{2}E_{e+i}}{\partial\tau_{\kappa\alpha}^{\mathbf{q}}\partial\tau_{\kappa'\beta}^{\mathbf{q}}} \\ \tilde{D}_{\alpha\beta}^{\mathbf{q}}(\kappa,\kappa') &= \frac{\tilde{C}_{\alpha\beta}^{\mathbf{q}}(\kappa,\kappa')}{\sqrt{M_{\kappa}M_{\kappa'}}} \\ \gamma_{mq}(\kappa\alpha) &= \frac{\gamma_{mq}(\kappa\alpha)}{\sqrt{M_{\kappa}}} \\ \text{with } \left\langle \gamma \left| \gamma \right\rangle = 1 \right. \\ \eta_{mq}(\kappa\alpha) &= \frac{\gamma_{mq}(\kappa\alpha)}{\sqrt{M_{\kappa}}} \\ \text{with } \left\langle \eta \left| M \right| \eta \right\rangle = 1 \end{split}$$

Zone-center phonons (q → 0) (TO modes : \mathcal{E} = 0, LO modes : \mathcal{D} = 0):

• Force :

$$F_{\kappa\alpha} = -\sum_{b\kappa'\beta} C^{0b}_{\alpha\beta}(\kappa,\kappa') \tau^{b}_{\kappa'\beta} + \sum_{\beta'} Z^{*}_{\kappa,\alpha\beta'} \hat{q}_{\beta'} \Big| \mathcal{E}$$

Displacement field

$$\mathcal{D}_{\alpha} = \frac{4\pi}{\Omega_{0}} \sum_{\alpha} \sum_{\kappa} Z^{*}_{\kappa',\alpha\beta} \tau^{b}_{\kappa'\beta} + \sum_{\beta} \varepsilon^{\infty}_{\alpha\beta} \hat{q}_{\beta} \left| \mathcal{E} \right|$$

Along q, \mathcal{D} must be preserved : $q_{\alpha}.\mathcal{D}_{\alpha}=0$

$$\left|\boldsymbol{\mathcal{E}}\right| = -\frac{4\pi}{\Omega_{0}} \frac{\sum_{\boldsymbol{b}\boldsymbol{\kappa}'} \sum_{\boldsymbol{\alpha'}\boldsymbol{\beta}} Z^{*}_{\boldsymbol{\kappa'},\boldsymbol{\alpha'}\boldsymbol{\beta}} \tau^{\boldsymbol{b}}_{\boldsymbol{\kappa'}\boldsymbol{\beta}} \hat{\boldsymbol{q}}_{\boldsymbol{\alpha'}}}{\sum_{\boldsymbol{\alpha'}\boldsymbol{\beta'}} \hat{\boldsymbol{q}}_{\boldsymbol{\alpha'}} \varepsilon^{\infty}_{\boldsymbol{\alpha'}\boldsymbol{\beta'}} \hat{\boldsymbol{q}}_{\boldsymbol{\beta'}}}$$

LO-TO correction at Γ

$$\begin{aligned} F_{\kappa\alpha} &= -\sum_{b\kappa'\beta} C^{0b}_{\alpha\beta}(\kappa,\kappa') \tau^{b}_{\kappa'\beta} + \sum_{\beta'} Z^{*}_{\kappa,\alpha\beta'} \ \hat{q}_{\beta'} \left(-\frac{4\pi}{\Omega_{0}} \frac{\sum_{b\kappa'} \sum_{\alpha'\beta} Z^{*}_{\kappa',\alpha'\beta'} \ \tau^{b}_{\kappa'\beta} \ \hat{q}_{\alpha'}}{\sum_{\alpha'\beta'} \hat{q}_{\alpha'} \ \varepsilon^{\infty}_{\alpha'\beta'} \ \hat{q}_{\beta'}} \right) \\ &= -\sum_{b\kappa'\beta} \tau^{b}_{\kappa'\beta} \left(C^{0b}_{\alpha\beta}(\kappa,\kappa') + \frac{4\pi}{\Omega_{0}} \frac{\sum_{\beta'} \left(Z^{*}_{\kappa,\alpha\beta'} \hat{q}_{\beta'} \right) \sum_{\alpha'\beta'} \left(Z^{*}_{\kappa',\alpha'\beta'} \ \hat{q}_{\alpha'} \right)}{\sum_{\alpha'\beta'} \hat{q}_{\alpha'} \ \varepsilon^{\infty}_{\alpha'\beta'} \ \hat{q}_{\beta'}} \right) \\ & \downarrow \\ Non-analytical term to be added \\ to \ C_{\alpha\beta}(\kappa, \kappa') to compute \\ the LO-TO splitting \\ in the limit of q \rightarrow 0 \end{aligned}$$

3. Interatomic force constants in real space

X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)

Interatomic force constants

If the dynamical matrix was known at any q

$$C_{\kappa\alpha,\kappa'\beta}(0,b) = \frac{(2\pi)^3}{\Omega_0} \int_{\mathrm{BZ}} \widetilde{C}_{\kappa\alpha,\kappa'\beta}(\mathbf{q}) e^{i\mathbf{q}\cdot\mathbf{R}_b} d\mathbf{q}.$$

 Since the dynamical matrix is only known on a regular (*lxmxn*) grid, we can only approximate IFC in a box of (*lxmxn*) unit cells

Range of the IFC

• Are the IFC in real space really short range ?

$$C_{\kappa\alpha,\kappa'\beta}(0,b) = C_{\kappa\alpha,\kappa'\beta}^{SR}(0,b) + C_{\kappa\alpha,\kappa'\beta}^{LR}(0,b)$$

Short-range chemical forces

For materials with non-vanishing Z* Long-range Coulomb forces

Dominant DD interaction

Isotropic:
$$C_{\kappa\alpha,\kappa'\beta}(0,a) = \frac{Z_{\kappa}Z_{\kappa}'}{\epsilon} \left(\frac{\delta_{\alpha\beta}}{d^3} - 3\frac{d_{\alpha}d_{\beta}}{d^5} \right)$$
 with $\mathbf{d} = \mathbf{R}_a + \boldsymbol{\tau}_{\kappa'} - \boldsymbol{\tau}_{\kappa}$
Anisotropic: $C_{\kappa\alpha,\kappa'\beta}^{\mathrm{DD}}(0,a) = \sum_{\alpha'\beta'} Z_{\kappa,\alpha\alpha'}^* Z_{\kappa',\beta\beta'}^* \left(\frac{(\epsilon^{-1})_{\alpha'\beta'}}{D^3} - 3\frac{\Delta_{\alpha'}\Delta_{\beta'}}{D^5} \right) \times (\det\epsilon)^{-1/2}$

Model interaction valid at large distances Estimated in real and reciprocal space from Z* and ε° .

IFC in real space

Substract the long-range DD part in recirpocal space

Decomposition provided by anaddb

4. Phonon dispersion curves

X. Gonze and Ch. Lee, Phys. Rev. B 55, 10355 (1997)

Dynamical matrix at any q

Start from the IFC in real space

$$C_{\kappa\alpha,\kappa'\beta}(0,\!b) \!=\! C^{\text{SR}}_{\kappa\alpha,\kappa'\beta}(0,\!b) \!+\! C^{\text{DD}}_{\text{Ew},\kappa\alpha,\kappa'\beta}(0,\!b)$$

• Fourier transform back the SR part to q-space and add back the DD part

$$\widetilde{C}_{\kappa\alpha,\kappa'\beta}(\mathbf{q}) = \sum_{\mathbf{d}_b \in \text{box } (l \times m \times n)} C^{\text{SR}}_{\kappa\alpha,\kappa'\beta}(0,b) e^{i\mathbf{q} \cdot \mathbf{R}_b} + \widetilde{C}^{\text{DD}}_{\text{Ew},\kappa\alpha,\kappa'\beta}(\mathbf{q}).$$

Diagonalize the dynamical matrix at q

Acoustic sum rule

The crystal energy must be invariant under global translation of the whole crystal ($\omega^{AC}=0$).

• This imposes a constraint on the force constant matrix known as the **acoustic sum rule** (ASR) :

$$\sum_{\kappa'} \widetilde{C}_{\kappa\alpha,\kappa'\beta}(\mathbf{q}=\mathbf{0}) = 0 \quad \text{or} \quad \sum_{\kappa'b} C_{\kappa\alpha,\kappa'\beta}(a,b) = 0$$

• This relation is slightly broken due to the use of a real space grid to evaluate the exchange-correlation energy.

Acoustic sum rule

• The ASR is restored using :

$$\widetilde{C}^{\text{New}}_{\kappa\alpha,\kappa'\beta}(\mathbf{q}=\mathbf{0}) = \widetilde{C}_{\kappa\alpha,\kappa'\beta}(\mathbf{q}=\mathbf{0}) - \delta_{\kappa\kappa'}\sum_{\kappa''} \widetilde{C}_{\kappa\alpha,\kappa''\beta}(\mathbf{q}=\mathbf{0})$$

• The same "q=0 correction" used at all q

$$\widetilde{C}_{\kappa\alpha,\kappa'\beta}^{\text{New}}(\mathbf{q}) = \widetilde{C}_{\kappa\alpha,\kappa'\beta}(\mathbf{q}) - \delta_{\kappa\kappa'} \sum_{\kappa''} \widetilde{C}_{\kappa\alpha,\kappa''\beta}(\mathbf{q} = \mathbf{0})$$

This is equivalent to correct the "on-site" IFC in real space

$$C^{\text{New}}_{\kappa\alpha,\kappa\beta}(a,a) = -\sum_{(\kappa'',b)\neq(\kappa,a)} C_{\kappa\alpha,\kappa''\beta}(a,b)$$

Summary : ABINIT 2nd DDB

$$D = D^{anal} + \frac{Z^*Z^*}{\varepsilon^{\infty}} \qquad \varepsilon^0 = \varepsilon^{\infty} + \frac{Z^* \cdot Z^*}{D^{anal}} + \frac{e \cdot e}{C}$$
$$C = \overline{C} + \frac{\zeta\zeta}{D^{anal}} \qquad e = \overline{e} + \frac{Z^* \cdot \zeta}{D^{anal}}$$

4. What can we do with that ?

Infrared and Raman spectra

P. Hermet,¹ M. Goffinet,¹ J. Kreisel,² and Ph. Ghosez¹ PHYSICAL REVIEW B 75, 220102(R) (2007)

Phonon dispersion curves

Gonze, X., J.-C. Charlier, D. C. Allan, and M. P. Teter, 1994, Phys. Rev. B **50**, 13035.

Borissenko et al., J. Phys. Condens. Matter 25, 102201 (2013)

Dispersion curves of Bi

Full line DFPT without spin-orbit

Only very old experimental data available

- Yarnell et al, IBM J.Res. Dev. 1964
- Smith, internal report Los Alamos 1967

10-15% change due to Spin-orbit coupling

Full line DFPT with spin-orbit

LE. Diaz-Sanchez, A.H. Romero, X. Gonze, Phys. Rev. B 76, 104302 (2007)

Structural instabilities

Structural instability :

Negative curvature ω²<0 ω *imaginary* (unstable mode)

Instability of stishovite under pressure

Phonon softening under pressure

Ch. Lee and X. Gonze, Phys. Rev. B 56, 7321 (1997)

Paraelectric \mathcal{P}_{up} $\xi = 0$ $\xi = +1$

Instability for correlated displacements only

2-D instability in reciprocal space Chain of correlation in real space

Ph. Ghosez, X. Gonze and J.-P. Michenaud. Ferroelectrics 206, 205-217 (1998).

Cochran's model:

Competetion between SR and LR forces

Ph. Ghosez, X. Gonze and J.-P. Michenaud, Europhys. Lett. 33, 713-718 (1996).

Strain induced ferroelectricity

Role of epitaxial strain on rocksalt binary oxides

E. Bousquet, N. Spaldin and Ph. Ghosez, Phys. Rev. Lett. 104, 037601 (2010)

FE and AFD instabilities of SrTiO₃

Analysis of IFC

Comparison of the IFC between different perovskites

			$BaTiO_3$			PbTiO ₃			PbZrO ₃	
Atom		Total	DD	SR	Total	DD	SR	Total	DD	SR
B_0 -O ₁	()	+0.0094	+0.2325	-0.2231	-0.0012	+0.1865	-0.1877	-0.0687	+0.1380	-0.2067
	(\bot)	-0.0211	-0.0430	+0.0218	-0.0178	-0.0417	+0.0239	-0.0100	-0.0358	+0.0258
$B_0 - B_1$	()	-0.0672	-0.0368	-0.0304	-0.0615	-0.0285	-0.0330	-0.0499	-0.0211	-0.0288
	(\bot)	+0.0075	+0.0184	-0.0109	+0.0065	+0.0142	-0.0077	+0.0054	+0.0105	-0.0052
B_0 -O ₄	()	+0.0156	+0.0086	+0.0070	+0.0135	+0.0069	+0.0066	+0.0106	+0.0051	+0.0055
	(\bot)	+0.0009	-0.0016	+0.0007	+0.0015	-0.0015	+0.0006	+0.0012	-0.0013	+0.0002
B_0 - A_0	()	-0.0286	-0.0212	-0.0074	-0.0277	-0.0241	-0.0036	-0.0271	-0.0216	-0.0054
	(\bot)	+0.0134	+0.0106	+0.0028	+0.0157	+0.0121	+0.0036	+0.0145	+0.0108	+0.0037
	(xx)	-0.0006	+0.0000	-0.0006	+0.0012	+0.0000	+0.0012	+0.0007	+0.0000	+0.0007
A_0-O_1	()	-0.0004	+0.0114	-0.0118	+0.0108	+0.0162	-0.0054	+0.0139	+0.0169	-0.0030
	(zz)	-0.0108	-0.0154	+0.0045	-0.0110	-0.0181	+0.0071	-0.0103	-0.0163	+0.0060
A_0-A_1	()	-0.0112	-0.0052	-0.0060	-0.0108	-0.0086	-0.0022	-0.0094	-0.0093	-0.0001
	(\bot)	+0.0038	+0.0025	+0.0012	+0.0054	+0.0043	+0.0011	+0.0056	+0.0047	+0.0009

Ph. Ghosez, E. Cockayne, U.V. Waghmare and K. M. Rabe, Phys. Rev. B 60, 836 (1999)

Hania Djani,^{1,2,*} Eric Bousquet,^{3,4} Abdelhafid Kellou,² and Philippe Ghosez³ PHYSICAL REVIEW B 86, 054107 (2012)

		Γ_5^-	X_2^-	X_2^+	X_{3}^{+}	X_4^+	Γ_5^-	X_2^-	X_{3}^{+}	Γ_5^-
Phase	Α	[198i]	[183 <i>i</i>]	[135 <i>i</i>]	[104 <i>i</i>]	[98 <i>i</i>]	[29]	[80]	[107]	[137]
Phases arising from single-mode condensation										
Fmm2	361.0	0.84					0.51			0.11
Amma	395.6		0.79					0.60		
Abam	444.7			0.99						
Bmab	444.5				0.98				0.14	
Amaa	384.0					0.99				
Experimentally observed phases										
B2cb	601.0	0.53			0.79		0.24			0.09
$P2_1ab$	582.7	0.52		0.59	0.55		0.04		0.1	0.09
Hypothetical phases										
$A2_1ma$	514.5	0.58		0.78			0.01			0.11
$P2_1/a$	455.0			0.76	0.62				0.11	

$$\begin{split} \Delta &= \sum_{i} Q_{i} \eta_{i}, \\ Q_{i} &= A \alpha_{i} = \langle \eta_{i} | M | \Delta \rangle. \\ A &= \langle \Delta_{i} | M | \Delta \rangle \end{split}$$

$$\begin{split} \Delta E_t \left(Q_{\Gamma_5^-}, Q_{X_2^+}, Q_{X_3^+} \right) \\ &= -2.50 Q_{\Gamma_5^-}^2 - 7.50 \times 10^{-1} Q_{X_3^+}^2 - 1.03 Q_{X_2^+}^2 \\ &+ 1.36 \times 10^{-5} Q_{\Gamma_5^-}^4 + 1.97 \times 10^{-6} Q_{X_3^+}^4 \\ &+ 2.65 \times 10^{-6} Q_{X_2^+}^4 + 2.10 \times 10^{-6} Q_{\Gamma_5^-}^2 Q_{X_3^+}^2 \\ &- 1.79 \times 10^{-9} Q_{\Gamma_5^-}^2 Q_{X_2^+}^2 + 1.79 \times 10^{-6} Q_{X_3^+}^2 Q_{X_2^+}^2. \end{split}$$

 $P2_1ab$ ferroelectric phase of Bi₂WO₆

		Calculated (0 K)			Experi	Experimental (300 K)			
	Atoms	x/a	y/b	z/c	\mathbf{x}/\mathbf{a}	y/b	\mathbf{z}/\mathbf{c}		
Bi2	Bi_1	-0.0109	0.5102	0.1698	-0.0126	0.5191	0.1726		
IQIQI	Bi_2	-0.0036	0.4872	-0.1698	-0.0113	0.4839	-0.1722		
Bi1	W	0.0000	-0.0055	0.0000	0.0000	0.0077	-0.0004		
0'2 0"2	O'_1	0.1679	0.7039	-0.0108	0.2679	0.7015	-0.0151		
--------	O"1	0.2682	0.1951	0.0109	0.3342	0.2297	0.0159		
	O'_2	0.4532	0.5363	0.1114	0.5703	0.5603	0.1082		
	O"2	-0.0355	0.0491	-0.1108	0.0854	0.0526	-0.1076		
	O'_3	0.2464	0.2519	0.2483	0.2740	0.2403	0.2511		
	O"3	0.2541	0.2468	0.7484	0.2728	0.2585	0.7485		

Good of bad agreement ?

 $P2_1ab$ ferroelectric phase of Bi₂WO₆

		Exp	perimental		Calculated
Modes	frequencies	α_i	$Q_i = \Lambda \alpha_i$	α_i	$Q_i = \Lambda lpha_i$
Γ_5^-	i198 cm^{-1}	0.56	-4.28.23	0.52	303.73
X_2^+	$i135 \ cm^{-1}$	0.30	231.48	0.59	344.90
X_3^+	$i104 \ cm^{-1}$	0.59	455.26	0.55	-325.51
Γ_5^-	$29 \ cm^{-1}$	0.35	-266.02	0.04	26.022

More relevant comparison between relaxed and experimental structure !

5. Thermodynamical properties

Ch. Lee and X. Gonze, Phys. Rev. B 51, 8610 (1995) G.-M. Rignanese, J.-P. Michenaud and X. Gonze, Phys. Rev. B 53, 4488 (1996)

Statistical physics :

In the harmonic approximation, the vibrations of the lattice (also called **phonons**) can be treated as gas of independent particles. They obey the Bose-Einstein statistics :

$$n(\omega) = \frac{1}{e^{\frac{\hbar\omega}{k_B T}} - 1}$$

1

The internal energy of the boson gas can be calculated directly using the standard formula:

$$U_{phon} = \int_{0}^{\omega_{max}} \hbar \omega \left(n(\omega) + \frac{1}{2} \right) g(\omega) d\omega$$

Energy of the harmonic oscillator

Phonon density of states

All vibrational contributions to thermodynamic properties, in the harmonic approximation, can be calculated in this manner.

Phonon density of states (DOS)

For each frequency channel, one counts the "number" of phonon modes

$$g_{norm}(\omega) = \frac{1}{3n_{at}N} \sum_{m\bar{q}} \delta(\omega - \omega_{m\bar{q}})$$

Thermodynamical properties

• Phonon DOS gives access to the vibrational contribution to various quantities:

$$\Delta F = 3nNk_BT \int_0^{\omega_L} \ln\left\{2\sinh\frac{\hbar\omega}{2k_BT}\right\} g(\omega)d\omega , \qquad (1)$$

$$\Delta E = 3nN\frac{\hbar}{2} \int_0^{\omega_L} \omega \coth\left(\frac{\hbar\omega}{2k_BT}\right) g(\omega)d\omega , \qquad (2)$$

$$C_v = 3nNk_B \int_0^{\omega_L} \left(\frac{\hbar\omega}{2k_BT}\right)^2 \operatorname{csch}^2\left(\frac{\hbar\omega}{2k_BT}\right) g(\omega)d\omega , \qquad (3)$$

$$S = 3nNk_B \int_0^{\omega_L} \left[\frac{\hbar\omega}{2k_BT} \coth \frac{\hbar\omega}{2k_BT} - \ln \left\{ 2\sinh \frac{\hbar\omega}{2k_BT} \right\} \right] \\ \times g(\omega)d\omega , \qquad (4)$$

<u>SiO₂ α -quartz versus stishovite</u>

Ch. Lee and X. Gonze, Phys. Rev. B 51, 8610 (1995)

Thermal expansion

From X. Gonze