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« The Projector Augmented-Wave method is an extension of
augmented wave methods and the pseudopotential approach, which

combine their traditions into a unified electronic structure method »

Peter Blochl, Physical Review B 50, 17953 (1994)
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FIRST PART

PAW BASICS




C2A OUTLINE

Before PAW

A bit of history
Pseudopotentials, « all-electrons », basis, ...
How to combine the best of each world?

The PAW formalism

The PAW approach

The PAW linear transformation

Charge density, Hamiltonian, Energy, ...
Approximations, advantages, ...

How to use PAW in ABINIT
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PAW BASICS

Before PAW




C2A PERFORMING A DFT CALCULATION

A self-consistent set of equations

p(r) =Y fu|wa(r)|?, where |y,) satisfies

1
(—§V2 - & VH[p] - ch[p] + Vext + vPseudo) \Wn) = €n|Wn)

To solve these Kohn-Sham equations, need
== AN exchange-correlation functional
== A basis set for expressing the wave-functions |y,,>

== AN (iterative) algorithm for finding the wave-functions
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C2A BASIS SETS

The wave functions are developped
on a basis which can be...

Few functions (per atom) in the basis

Localized -
o Spherical harmonics, == All the elctec;ron wa\;?-fﬁlncltlonzls_ czzln be
Gaussians, represented, even highly localized ones
O Atomic orbitals, ... == Accurate results, but heavy calculations
== Difficult to manipulate:
The basis moves with atoms
Delocalized
O Plane waves, ... == Many functions in the basis especially
® to represent localized wave-functions
== [Easy to converge (systematic)
Adaptive == More adapted to periodic systems

Q Wavelets, ...

O
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PSEUDOPOTENTIALS

Assumption: for chemical properties only valence electrons are relevant...

Replace the potential due to the nucleus and
the core electrons by a smooth potential

B Eliminate (from the bond) the chemically
inactive core electrons

B Reduce the number of electron orbitals to
compute explicitely

B Eliminate the rapid variations of the potential
in the core region

B Manipulate a smooth pseudo-wavefunction
for each valence electron

FROZEN-CORE + PSEUDOPOTENTIAL

A reasonable approximation...
... but not perfect
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PSEUDOPOTENTIALS

= 1979-1982: BHS pseudopotentials

(Bachelet, Hamann, Schluter)

== 1982: Separable pseudopotentials

(Kleinman, Bylander)

== 1990: efficient pseudopotentials
(Martins, Troullier)

== 1991: ultrasoft pseudopotentials
(Vanderbilt)

Separable from...

V(1) = Viee(N)8(r =) + ) [00im(r)> En° <Onim(Y))]
v n,l.m

local part n
P > s

non-local

where |¢4,,> IS a projector (pseudo-wavefunction)
l,m,n are quantum numbers.
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PSEUDOPOTENTIALS AND PLANE WAVES

With pseudopotentials, the smoothed potential can be expressed
on a (relatively) small plane wave basis...

. (V nucleus +V core electronS) replaced by \7pp

m Solve: H |i|~/n>=3n |\T]n>

with: |:| = —%A+V

7 PP
+Vye +Vy +V

Hartree

B Take ‘\T/n> as a reasonable approximation for ‘\Vn>

)< [.)

Exact

Plane waves
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C22A GOING BEYOND PSEUDOPOTENTIALS ?

We want to keep from pseudopotential scheme...

Avoid expensive

B The frozen core electrons — > computation

B The use of auxiliary smooth quantities

. _ : Use plane waves
(potential, wave functions) — As smooth as possible

Limit basis size

We want also ...

B To be able to represent the nodal structure of “exact” —— Reach accuracy
) even near nuclei
wave-functions around the nucleus

B To use a basis as convenient as possible: Take advantage of

Adapted to charge density and easy to use plane waves and
localized basis
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C2A THE BEST OF EACH WORLD

Treat both rapid oscillations and smooth sections of the wave functions

Use two basis (augmented wave)

DD -

Find a connection between the smooth auxilliary wave function
and the exact one

‘\Vn>:T‘\T’n> '
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PAW BASICS

The PAW formalism




C2AQ THE PROJECTOR AUGMENTED-WAVE METHOD

Key features of PAW

B Frozen core approximation:
only valence electrons are taken into account in the calculation

B The interaction between valence electrons and the ionic core
IS taken into account within a pseudopotential without norm
constraint

B Several basis are mixed: planes waves and
local (atomic) orbitals
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C2A  THE PAW LINEAR TRANSFORMATION

In search of a linear (and inversible) transformation T so that

« Exact » « Auxilliary » smooth
wave function T - wave function
Strong oscillations ‘\V”> N ‘\V”> No oscillation
near the nucleus near the nucleus
Used to compute Manipulated by the DFT code
accurate properties (SCF cycle)

Developed on plane waves in ABINIT
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C2A  THE PAW LINEAR TRANSFORMATION

1- Define non-overlapping spherical regions
around atoms R (augmentation regions) 6
In search of T as a sum of local transformations : Q

T = I + Z SR
= \%}ﬂ\%}z\t//n}QR‘,SR\wn}

2- In each augmentation region around R,
define a partial wave basis |¢;)

A good choice : atomic orbitals
(solutions of atomic Schrodinger equation, in augmentation region)

3- For each partial wave, define
a « soft » pseudo partial wave basis |$})

|$R) matches |¢R) at augmentation region boundary
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THE PAW LINEAR TRANSFORMATION

Salf) = (167) —~160)) |
5- Let’s define the |pF) as duals of |@F):

1; '
< ‘qb] > RR Y |ﬁf) = 0 outside the augmentation region

If the |pF) are a complete (non-orthogonal) basis,
the closure relation is:

= Z|¢?f)<ﬁR
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C2A  THE PAW LINEAR TRANSFORMATION

6- If the |@F) are a complete basis, the wave functions |,,)
can be developed as:

) Zm F 1)

Then
Swl¥n) ZSRM% )BF 1) Z(m — 1$8)(BF 1)

We finally get the expression of the transformation T:

$n) = 1) Z(lcpl ~ 1) (PF 1)

r—l+Z(|¢l ~ 1$8)(BF]
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C2A  THE PAW LINEAR TRANSFORMATION

) = 7 ) = I Zm ln) Zm R 1ga) f0)

O O
+ -

~ © 1 | Y ~1

Plane waves All-electron « on-site » Pseudo on-site
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C2A THE PAW TRANSFORMATION FOR OPERATORS

Expectation value of an operator

(A)= 2 1, [A¥,) = 3 1,(F,

T*AT‘ an>

For a “quasi-local” operator

PAW « on-site » contributions

Completeness assumed !
Applicable to...

B Density operator |r)}{r| —  charge density
B Kinetic operator — %A —  Kkinetic energy
B Hartree potential V. —>  Hartree energy
B XC potential Vy —  XC energy
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C2A PAW - CHARGE DENSITY

Starting from density operator |r){(r| and applying (2) , we get:
n() = fulbalr)rlBn) + O SulalBENSEIr N SFNBR ) = D fuldn BENGE ) |65 )55 1)

L,j,R i,j,R

Can be rewritten as:

I’) Smooth part evaluated on
plane wave grid

With n —Zf c,;

One-site contributions
~ evaluated on radial grid
r) ,(r)

On-site density matrix

Governs the "on-site" parts

N can be expressed as a function of |1,l~)n)
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C2A PAW - ENERGY

Starting from kinetic operator —%A and applying (2) , we get:

B = f (|~ 24| in) + Z Fuln|BE N @F | = A |7 WBT 1) — Z f Dl BEND S [— 24| NBT 1tn)

i,j,R i,j,R

: ki — ki kinR _ = kinR
Can be rewritten as: | E™" =E™ + Z(El'n —E/™ )
R

With EFm = £ (P, |—22A4,) Smooth part

B R = pf (oF|-4]9F)
Lj

> One-site contributions

EEm R =) ol (@8]~ 4]¢)
L,J

s
,Oin = Z fn<&n ‘5|R><5F ‘l/-;n>
The same for Hartree energy and XC energy

PAW | May. 12, 2014 | PAGE 22



C2A PAW - ENERGY

E=E"+E_ .. +E _E R _ER
Hartree XC E — E + Z(El — E1 ) I
R

Smooth part | s
Z f < >+ E.[A+0,]

+E, [A+nd]+ _[VH [, JA+Ajdr+U (R, Z,,)

One-site contributions

ES = Zp” <¢|—|¢ +Exc[n +n! ]+E [n ]+jv [nZC][n ]dr
ElR_Zj:pij< i‘7‘¢j>+Exc[l +ﬁCR]+EH[ +1 ]+_[v [nZC][ +nR]dr
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C2A PAW - HAMILTONIAN

- dE oE &Ean(r) OE 9p;
H = :$+:[5ﬁ —dr+) :

dp op  &iodpy Op
g0 B

——=—-A ~xc ~iR DiR p;
p 2 ;VH +;‘p > \J <p1‘
/ \

Local + Hartree + XC potential Non-local separable potential

B Similar to Hamiltonian in the pseudo-potential formalism
B Non-local has a varying intensity which is different from
an atom to another (depending on atom environment)

B Non-local potential intensity is non-diagonal
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C2A  PAW - WAVE EQUATION

In order to compute | n(r)= Zf 7, (r) +Zpu( %(r)?(r))

R,ij
Vy)

_Pij —Z fn<Wn|pi><5j

=

we need @n)

H|¢n> — £n|¢n>
<¢n|¢m> = Onm

) =7 w;n)
=1+ (19F) - 1))

I,R
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C2A  PAW - WAVE EQUATION

B The wave equation H|y,,) = &,|¢y,,)

becomes:

ﬁl@n) =&, S |{I;n>

B The orthogonality conditions (Y,,|Y¥.,) = 6,m

become: (i]}n‘S‘t’[)n> = O0,m

i 5=+ 3B (o o7) - (" |67 KBS

R,ij
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OUTLINE : A PAW CALCULATION

What do we need

P/ane
B A basis suitable to develop “smooth” auxiliary wave-functions [

A set of atomic orbitals
A basis of pseudo-orbitals and the associated projectors

A pseudo-potential

Approximations

B The core electrons are frozen (“frozen-core”) controlled
B The plane-wave basis is truncated controlled
B The partial-wave basis is truncated controlled

Note : radius of augmentation regions is not an approximation
At basis completeness, results are independent of it
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PAW — ADVANTAGES, DRAWBACKS

Advantages

B The “exact’ density is computed; we have access to the “nodal” wave functions
— high transferability (especially for magnetic systems)
— properties depending on the density near the nucleus are accessible (ex. NMR)

B The size of the plane-wave basis is equivalent to “ultra-soft” pseudo-potentials
(no norm constraint)

B The PAW method is as accurate as an “all-electron” method;
Convergence can be easily controlled

B We have access to a local information around atoms
(a “local PAW approximation” can be used ; see later)

Drawbacks

B Need more developments comparing to “pure” pseudo-potential formalism
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Exp. (this work)
all-electron GGA
all-clectron LDA

PAW GGA

PAW GGA with semicore
PAW LDA

PAW LDA with semicore

Dewaele, Torrent, Loubeyre, Mezouar, PRB 78, 104102 (2008)
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C2A PAWVSALL-ELECTRON - IRON

] Exp. (this work)
A all-electron GGA
& all-electron LDA
— PAW GGA
= PAW GGA with semicore
== PAWLDA
« ==  PAW LDA with semicore

Dewaele, Torrent, Loubeyre, Mezouar, PRB 78, 104102 (2008)
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USAGE IN ABINIT

Use a “PAW atomic dataset” file as “pseudopotential” file.

Decrease value of plane-wave cut-off energy (wrt norm-conserving psps)

Give a value for the plane-wave cut-off of the “double grid” AEINIT heyyores
(see later) P aWeCUng

PAW datasets can be downloaded from ABINIT web-site
for (almost) the whole periodic table

PAW datasets can be generated “on-demand” with ATOMPAW tool
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SECOND PART

PAW IN DEEP




) = T ) = lin) Em 1) Em £1a) J(0

© O
+ -

~ © = ~1

Plane waves All-electron « on-site » Pseudo on-site
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C2A OUTLINE

About partial waves basis

Basis completeness
PAW datasets

Advanced concepts

Hartree energy, charge compensation density
Details on PAW Hamiltonian

Double grid technique

PAW, ultrasoft PP, norm-conserving PP

More about PAW

Derivatives of energy, DFPT
Local PAW transformation and applications
Advanced application
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PAW IN DEEP

About partial wave basis

| PAGE 35




C2A PAW TRANSFORMATION: HOW DOES IT OPERATE ?

The « exact » wave function is |1/)n) — | Jﬂl N ]

7

We define an « augmentation region »

oL\

<

In the pseudo-potential ~
formalism, we handle |1/Jn> = I
a pseudo wave function -

51

[

£a

PAW | May. 12, 2014 | PAGE 36



PAW TRANSFORMATION: HOW DOES IT OPERATE ?

| If the partial wave basis and the
- lane wave basis are complete,
|1/J~n> o g |§BF )(ﬁLR |lp~n> — i N [\\M— ] rl/?n) is identical one the twch) basis

inside the augmentation region
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DE LA RECHERCHE A LINDUSTRIE

THE « PAW ATOMIC DATASETS »

A “PAW atomic dataset” contains |¢5>, |§BF>: |ﬁ5>

All useful data concerning the atomic species
The partial wave basis (atomic orbitals, pseudo-orbitals, projectors)
Used to define the PAW linear transformation

With PAW atomic datasets, accuracy can be controlled

With PAW atomic datasets, efficiency can be controlled

To be developed in the next presentation...
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THE « PAW DATASETS »

Partial waves, pseudo partial waves and projectors...

Nickel [1s? 2s? 2p® 3s? 3p®] 3d8 4s2

4s partial wave/projector d partial wave at Eref=1. Ry
I T I T I T I T - T I T I T T I T I T

W

— Partial wave
—— PS partial wave
—— Projector

— Partial wave
25 = — PS partial wave
' —— Projector 1

i 151/ \ —

amplitude (arb. units)
B T
1

amplitude (arb. units)

o)

rqdivs (a.n.} radius (a.n.)

“‘Bound” state “Unbound” state
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ABOUT THE BASIS COMPLETENESS

Evolution of the different contributions to the Density of States
(DoS) with respect to the size of the partial wave basis...

) - + 3 108 )(BR )
I,R

T T T T T T T T T i T T T 4 T T T T T T T T T T T 4
|

— Smooth PW N — Smooth PW | | N — Smooth PW | |
— AE on-site — AE on-site — AE on-site
— PS on-site — PS8 on-site — PS on-site

ﬁﬁ {

L A 1 1 1 l
1 04 -0.2 0 02 04 0.6 03

Partial wave basis: Partial wave basis:

Partial wave basis:
1 s orbital 2 s orbitals 3 s orbitals
1 p orbital 2 p orbitals 3 p orbitals
1 d orbital 2 d orbitals 3 d orbitals
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PAW IN DEEP

Advanced concepts

12 mai 2014




C2A COMPENSATION CHARGE DENSITY

The electrostatic potential computation faces two difficulties

B Because of the loss of norm during pseudization process, the
pseudo-densities 71 and 71; do not have the correct multipoles to
allow a correct treatment of long-range electrostatic interaction.

VHartree(ﬁ(r))%Z/r , Where Z = [n(r)dr

B The computation of the electrostatic potential as sum of 2 terms
cannot be achieved easily and converges slowly:

Viartree(T) = Vhartree (ﬁ(l‘)) + Vhyartree (nl (r) — fit (r))

} |

Plane waves: easy Slow convergence
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C2A COMPENSATION CHARGE DENSITY

One introduces 7i(r) , located inside augmentation regions, so that:

B The pseudo density has the same multipoles as the exact density,
Doing this, we recover the norm

B The “on_site” electrostatic potential vanishes.

()= () () + )| A7) +0)

J

Y
VHartree=0

fi(r) has to fulfil the multi-pole moment condition:

_fﬁ(r)-|r ~R|-Y (r-R)-dr= _[(nf —A2)r)Jr=R[-Y, (r=R)-dr =0

R R

and we recover Vyg eree(A(r) +A(r)) - 2/,
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C2A COMPENSATION CHARGE DENSITY

We define:

Norm recovery
g : analytical “shape”

a; = [l 8,00~ OFOr-R[-Y, (r-R)-dr
R\ } function

Y
Loss of norm /N

IgL(r)r'rzdrzl
R
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C2A HARTREE ENERGY

nT=(T~l+ﬁ)+(n1)—(ﬁ1+ﬁ)=ﬁT+nT1—ﬁT1 Tl1=zn§ ﬁ'122711

1 ' 1
g = [P = S )

1,0 < n N . 1 N 5
=3 (fir)(AAr) + (npq — Aip) (A7) + S (npq — Ap) (Npq — fipg)

(1) (2) (3)

Approximation: in (2), 7ir is replaced by 7iy;  (basis completeness is assumed)

1 1 1
Hartree energy becomes:. FEH = E(ﬁT)(ﬁT) - E(ﬁn)(ﬁn) +3 (ny1)(npq)

M= Y — B+ Bl = EY G+ )+ ) (B Gf + ) + B (D)
R
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C2A PAW HAMILTONIAN - DETAILS

DR is the expression of H in the partial wave basis:

DS - (qbﬂ_l/ZA + vch(nf;nc)kbi ) <¢] |_1/2A + vch(nl'nc)kb] )

Example of a formal calculation:

Spherical harmonics

(v (0 } _Uqﬁ. = ¢;(r)drdr
- {Zpu s, “)¢J"ff')s.jmj<f->j(i 3t s om0) s, (raroorar
—ZZm:ZP.J Gllrr?w 1, Glln:n 1om, Vlllj,li.,lj. .

\/ with V'il"i"i'v'j' - .”-%_ﬂ. (r)ﬁlj (r)¢liv(rl)¢lj,( )r|+1 drdr’

Gaunt coefficient
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C2A PAW HAMILTONIAN - DETAILS

This leads to:

D; = Di? T ;pklEijkl U Di]'(c T Zjveﬁ (r)QUL (r)dr
]

Exchange- Charge

atomic Hartree correlation compensation

Vst (I’) is a "local" potential:

Ve =V, [A+A+0,|+v [0 +0 ]
Nucleus+electrons Electrons

:_%A_I_Veff +Z‘ 5iR> Din <5H
i j
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C2A PAW HAMILTONIAN — ON-SITE XC POTENTIAL

All on—site quantities, including potentials,
can be expanded over "real spherical harmonics": nl(l’, 0,p) = Z Ny (r)SLM (6, 9)
LM

In the case of the XC potential, it is possible to use a Taylor series around
the spherical density:

This is a very good approximation
This is computationally efficient

0 00.0,0) = 35 (Vo 6,0) =] 1) -y @) [} O OL Sy

| | -7

Direct computation Development in moments
on spherical grid OR

Accurate

_ Approximated
CPU expensive
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uuuuuuuuuuuuuuuuuuuuu

« DOUBLE GRID » TECHNIQUE

ABIN,

IT heyopey
. : aw
B A«coarse » FFT grid is used to represent PS wave-functions P eCUng

B The compensation charge is needed on the FFT grid (regular grid) and on the grid
used to describe augmentation regions (radial grid)

B For accuracy, an auxiliary fine FFT grid is used
to compute densities and potentials

If only the « coarse » FFT grid
is used, not enough points are
In augmentation regions

« Double FFT » technique used to transfer densities/potentials between grids:

~ ~

ncoarse (F) l) ncoarse (G) — r'Tfine (G) i) ﬁfine (F)

PAW | May. 12, 2014 | PAGE 49



PAW VS PSEUDOPOTENTIALS

~ _dE :—%Mveﬁ LI or (FT] Dy =D +%:pklEijkI +D +2L:j\7€ﬂ (r)Q} (r)dr

B From PAW to ultrasoft pseudo-potentials

Linearisation of p; around atomic occupations in the spheres
in the total energy expression leads to:

formulation

Dij _ Di(j),US 4 Z j Veff (r)(ji%j (I’)dl’ Ultrasoft pseudopotential
L

B From PAW to norm-conserving pseudo-potentials

The norm of partial waves is equalto & N =0
the norm of pseudo partial waves Qi (r)=
D. = DO,KB Norm-conserving pseudopotential
ij— ij formulation
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PAW IN DEEP

More about PAW




C2A DERIVATIVES OF ENERGY

~

Hellmann-Feynman theorem dE

oA
— =S (.| =
da Wl

n

w)

\VAQ):

Hxc

First derivative of energy

B [n this term, the non-local
contribution is self-consistent

(depends on VHxc) B These terms are new,
but they are attached to the atomic sites
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DERIVATIVES OF E — CHAINS OF DEPENDENCIES

~ dE 1 - - - |dentifying where the WF
H = _,5 — _EA + Veff + Z‘ pi >Dij < pj ‘ appear in the energy formula
I,
In grey: norm-conserving
~ ~ A ~ ~ ~ Sps terms
Ve =V, [A+A+0,|+v [0 +0 ] i
D; = Di? + ZPklEijkl + Di}(c + Zjveﬁ (r)QUL (r)dr
_ » kI L
n (I’) = Z fn<Wn ‘I’><
n(r) = (i’j);e’{)ij qilj_ YL (I’ - R) qur - R‘) V)i(jC = <¢| ‘ch (ﬂl + nc)1¢j >

n,(r) = ?p., r)(r|g;)

NAA pi><
n PAW | May. 12, 2014 | PAGE 53



FORCES AND STRESS TENSOR

F, = j ZC)dr jv [n+ﬁc]6—ﬁR°dr
DF —,S%), _
- > p.,IVeﬁ(r) < dr=>"> (v, d Rg ’>\wn>
R,i,j,L R,i,j n

)aV (ﬁZc ) dr
08 5

_ 1 OB _ i e, o™ ([ +A; A )+ij(n+an

Q

; é% [V [ﬁ+ﬁc]ﬁcdr+é [, [+ ﬁc]aa;:ﬂ dr

/\

+— aﬁ.[veﬁ (r)n(r)dr+— Z p”j‘veﬁ (r) u dr

RIJL a,B

D; —¢,S; )

Ly )

len

In grey:

norm-conserving psps terms PAW | May. 12, 2014 | PAGE 54



C2A DERIVATIVES OF ENERGY OF HIGHER LEVEL

We need the Density-Functional Perturbation Theory

o_1fd" j
B 2n+ltheorem (Gonze et al, 1995) i!(dﬂ' =0

(2n+1)
2n+1 [ |:ZEWm’ :D Non variational

N1 (2n)
[ |:Z /1‘(# + A" Wm trial ! ﬂ‘:D Variational
i=0

=

rial

B Sternheimer equation gives first-order wave function
(new terms appear for PAW)

p*(q 0 _ g<o>s<o>)p ) = _p*(H" v _ grgo>s<1>} 70)

C n C n C n
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C2A DERIVATIVES OF ENERGY OF HIGHER LEVEL

Just an idea of the complexity of DFPT formula

2nd derivative of non-local energy with respect to
displacements of atom & in o and 3 directions

(D KV ) 2(<&n ‘ 5i ><5J ‘l/7n>)
an o ORZOR
_|_Zq D j v 82(gLYL)_|_6\/H(ﬁzc)a(gLYL)_+_6\/H(ﬁzc)a(gLYL) dr
a ij Mij ), eff or, 8rﬂ or, 5rﬁ 8rﬂ or,
Zaﬂ - Z< a (~ ) ( )_ e
ij B IOij 8VH nZC Y ~ 0 gLYL d
quj 8R2 Ii[_ arﬁ gL L +Veff arﬂ | r
Op; [ ov (ﬁ ) ~ 5(9 Y )_
_quj 8Ré Ii[_ Hal’azc gLYL +Veff alr'.a L _dr

In grey: norm-conserving

psps terms
Audouze, Jollet, Torrent, Gonze, Phys. Rev. B 73, 235101 (2006)

Audouze, Jollet, Torrent, Gonze, Phys. Rev. B 78, 035105 (2008)
PAW | May. 12, 2014 | PAGE 56



C2A LOCAL PAW TRANSFORMATION

APPROXIMATION 1 The plane-wave and the partial wave basis
are complete
) = ) IBENPRIDn) = gD = e
L,R — — inside augmentation
| | | | | regions
APPROXIMATION 2 The main part of the density is contained
Inside PAW augmentation regions
) Zm Fin) = | = zero
- - outside augmentation
| | | | | regions
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C2A LOCAL PAW TRANSFORMATION

If the two previous approximations are valid,
the PAW transformation

[Yn) = T 1) = [¥n) Embl ln) Zm ln)

Reduces to

=T ) = Em 1)

« Local PAW transformation »
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C2A LOCAL PAW TRANSFORMATION

B Whenis it valid ?

When the plane-wave cut-off energy is large enough
When the partial wave basis contains enough elements
When the radius of augmentation regions is large enough
When the electronic density is localized around the nuclei

B Typical application

Any properties applying to “correlated electrons”
Used in ABINIT for LDA+U, for local hybrid XC functionals, ..
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C2A LOCAL PAW TRANSFORMATION

Specific expression for the Hamiltonian

B When the local PAW transformation is valid,
any new contribution to the Hamiltonian
applies only in “on-site” contributions:

B Easy to implement!
No need of specific “PAW datasets”

See tomorrow lecture on LDA+U...
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DE LA RECHERCHE A LINDUSTRIE

PAW: ADVANCED APPLICATION

An example needing the accuracy of PAW Electric field Gradient

Table 1. Quadrupole couplings and asymmetries for a variety of structures, obtained by ab initio cal-
culations and comparison with experiment (see references for experimental details).

V , (R, n) _ 82 J- ‘ n(r) dr Sumple Nucleus C, (MHz) 7 Cowp (MH2) .

% aX aX r — R‘ Ti metal a4 9375 0.0 11.46 [18] 0.0
a”"p Zn metal Zn 12,514 0.0 12.34 [19] 0.0
cdl, 127] 91.656 0.0 97.6 [20] 0.0
LiNbO, Li 0.060 0.0
170 1.669 0.81
- BN 20.175 0.0 22.1 [21]
n(r): n (r) N (r)_|_ n(r) Si0, (quartz) 170 5278 0.210 5.19 [5] 0.19
YA c Si0, (stishovite) 6511 0.119 6.5=0.1 [22] 0.13+0.05
5235 0.147 53=0.1 [22]  0.125=0.005

_|_
+ Z (an (r)-Ak(r) Si0, (low cristobalite)
R

Table 2. EFGs in atomic units for atomic ions in the presence of an imposed external quadrupole
clectric field of 0.008 atomic units. The EFGs were computed with DFT using the PBE exchange
and correlation functional [12] using the Sadlej pVTZ basis.

V,(Rn)=V_,(R,n, +n,)+V_;(R,7)

lon V., (atomic units) Error, rigid core (%) Core-valence gap
(atomic units)

R ~R
t Z (Vaﬂ (R’ n_ —n )) F- 0.430 230
R

Fr+ 0.000 0.00%
Cl- 1.867 6.29
cr+ 0.000 0.00%
Mandatory to get correct results Br 1 681 177
B+ 0.055 1.49%,
- 10.921 133
I+ 0.142 1.20%
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