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« The Projector Augmented-Wave method is an extension of 

augmented wave methods and the pseudopotential approach, which 

combine their traditions into a unified electronic structure method »  

  

 

Peter Blöchl,  Physical Review B 50, 17953 (1994) 



FIRST PART 

 

PAW BASICS 



PAW |  May. 12, 2014  |  PAGE 4 

OUTLINE 

Before PAW 

A bit of history 

Pseudopotentials, « all-electrons », basis, … 

How to combine the best of each world? 

The PAW formalism 

The PAW approach 

The PAW linear transformation 

Charge density, Hamiltonian, Energy, … 

Approximations, advantages, … 

 

How to use PAW in ABINIT 



PAW BASICS 
 
 
 Before PAW 
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PERFORMING A DFT CALCULATION 

A self-consistent set of equations 

To solve these Kohn-Sham equations, need 

An exchange-correlation functional 

A basis set for expressing the wave-functions |n> 

An (iterative) algorithm for finding the wave-functions 
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BASIS SETS 

 

The wave functions are developped 

on a basis which can be… 

 
 
 

Localized 

Delocalized 

Spherical harmonics, 

Gaussians, 

Atomic orbitals, …  

Plane waves, … 

 

Adaptive 

Wavelets, … 

Few functions (per atom)  in the basis 

All the electron wave-functions can be 

represented, even highly localized ones 

Accurate results, but heavy calculations 

Difficult to manipulate: 

The basis moves with atoms 

Many functions in the basis especially 

to represent localized wave-functions 

Easy to converge (systematic) 

More adapted to periodic systems 
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PSEUDOPOTENTIALS 

 

Assumption: for chemical properties only valence electrons are relevant… 

 

FROZEN-CORE  +  PSEUDOPOTENTIAL 
 

A reasonable approximation… 
… but not perfect 

Eliminate (from the bond) the chemically 

inactive core electrons 

Reduce the number of electron orbitals to 

compute explicitely 

Eliminate the rapid variations of the potential 

in the core region 

Manipulate a smooth pseudo-wavefunction 

for each valence electron 

Replace the potential due to the nucleus and 

the core electrons by a smooth potential  
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PSEUDOPOTENTIALS 

12 mai 2014 

Separable from… 

1979-1982: BHS pseudopotentials 
(Bachelet, Hamann, Schlüter) 

1982: Separable pseudopotentials 
(Kleinman, Bylander) 

1990: efficient pseudopotentials 
(Martins, Troullier) 

1991: ultrasoft pseudopotentials 
(Vanderbilt) 

where |nlm> is a projector (pseudo-wavefunction) 

l,m,n are quantum numbers. 
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PSEUDOPOTENTIALS AND PLANE WAVES 

~  

    = 

  

Plane waves Exact 

 

With pseudopotentials, the smoothed potential can be expressed 

on a (relatively) small plane wave basis… 

 

)( electronscorenucleus VV  PPV
~

replaced by 

Solve: nnn ψ~ψ~H
~

 with: 

   

 

   

 

   Take          as a reasonable approximation for nψ
~

nψ

PP

effXCHartree VVVV
~

2

1
H
~



nn ψ~ψ 
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GOING BEYOND PSEUDOPOTENTIALS ? 

 

We want to keep from pseudopotential scheme… 

 

The frozen core electrons 

 

The use of auxiliary smooth quantities 

(potential, wave functions) – As smooth as possible 

To be able to represent the nodal structure of “exact” 

wave-functions around the nucleus 

 

To use a basis as convenient as possible: 

 Adapted to charge density and easy to use 

 

We want also … 

 

Avoid expensive 

computation 

Use plane waves 

Limit basis size 

Reach accuracy 

even near nuclei 

Take advantage of 

plane waves and 

localized basis 
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THE BEST OF EACH WORLD 

 

Treat  both rapid oscillations and smooth sections of the wave functions 

 Use two basis (augmented wave) 

 

Find a connection between the smooth auxilliary wave function 

and the exact one 

 

nn ψ~ψ 

= - + 

= +   … + ? 



PAW BASICS 
 
 
 The PAW formalism 
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THE PROJECTOR AUGMENTED-WAVE METHOD 

Frozen core approximation: 

only valence electrons are taken into account in the calculation  

The interaction between valence electrons and the ionic core 

is taken into account within a pseudopotential without norm 

constraint 

Several basis are mixed: planes waves and 

  local (atomic) orbitals 

 

Key features of PAW 
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THE PAW LINEAR TRANSFORMATION 

 

 In search of a linear (and inversible) transformation    so that 

 

Used  to compute 

accurate properties 

« Exact » 

wave function 

Strong oscillations  

near the nucleus 

nψ nψ
~

« Auxilliary » smooth 

wave function 

No oscillation  

near the nucleus 

Manipulated by the DFT code 

(SCF cycle) 
 

Developed on plane waves in ABINIT 
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THE PAW LINEAR TRANSFORMATION 

 

1- Define non-overlapping spherical regions 

 around atoms R (augmentation regions) 

 

 

2- In each augmentation region around R, 

 define a partial wave basis |𝜙𝑖
𝑅   

A good choice : atomic orbitals 
(solutions of atomic Schrödinger equation, in augmentation region) 

 

3- For each partial wave, define 

 a « soft » pseudo partial wave basis |𝜙 𝑖
𝑅   

|𝜙 𝑖
𝑅   matches |𝜙𝑖

𝑅  at augmentation region boundary 

R 

R R 

R 


R

nRnnn S  ~~~

In search of  as a sum of local transformations : 

𝝉 = 𝐈 + 𝑆𝐑
𝐑
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THE PAW LINEAR TRANSFORMATION 

 

4- It is easy to obtain an expression of  applied to |𝜙 𝑖
𝑅 : 

 

|𝜙𝑖
𝑅 = 𝝉|𝜙 𝑖

𝑅 = 𝐈 + 𝑆𝐑
𝐑

|𝜙 𝑖
𝑅 = |𝜙 𝑖

𝑅 + |𝜙𝑖
𝑅 − |𝜙 𝑖

𝑅  

 

5- Let’s define the |𝑝 𝑖
𝑅   as duals of  |𝜙 𝑖

𝑅 :   

If the |𝜙 𝑖
𝑅  are a complete (non-orthogonal) basis, 

the closure relation is: 

𝐈 =  |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|

𝑖

 

|𝑝 𝑖
𝑅 = 0 outside the augmentation region 

𝑆𝐑|𝜙 𝑖
𝑅 = |𝜙𝑖

𝑅 − |𝜙 𝑖
𝑅  

𝑝 𝑖
𝑅 𝜙 𝑗

𝑅′ = 𝛿𝑅𝑅′𝛿𝑖𝑗 
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THE PAW LINEAR TRANSFORMATION 

 

6- If the |𝜙 𝑖
𝑅  are a complete basis, the wave functions  |𝜓 𝑛  

 can be developed as:    

|𝜓 𝑛 = |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖

 

Then 

𝑆𝐑|𝜓 𝑛 =  𝑆𝐑|𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 =

𝑖

 |𝜙𝑖
𝑅 − |𝜙 𝑖

𝑅  𝑝 𝑖
𝑅|𝜓 𝑛 

𝑖

 

We finally get the expression of the transformation : 

 nmlRi ,,,

|𝜓𝑛 = |𝜓 𝑛 + |𝜙𝑖
𝑅 − |𝜙 𝑖

𝑅  𝑝 𝑖
𝑅|𝜓 𝑛 

𝑖,𝑅

 

𝝉 = 𝐈 + |𝜙𝑖
𝑅 − |𝜙 𝑖

𝑅  𝑝 𝑖
𝑅|

𝑖,𝑅
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THE PAW LINEAR TRANSFORMATION 

|𝜓𝑛 = 𝝉 |𝜓 𝑛 = |𝜓 𝑛  (1) 

Plane waves All-electron « on-site » Pseudo on-site 

~  1  ~1  

+     = -            

    

+ |𝜙𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅
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THE PAW TRANSFORMATION FOR  OPERATORS 

  
n n

nnnnnn AfAfA
~~ * 

Expectation value of an operator 

For a “quasi-local” operator 

(2)  






 
R

RR
AAAA

11

~~

PAW « on-site » contributions 

A 

Applicable to… 
 

Density operator |𝑟  𝑟|  charge density 

Kinetic operator −
1

2
Δ  kinetic energy 

Hartree potential VXC  Hartree energy 

XC potential VH  XC energy 

Completeness assumed ! 
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PAW – CHARGE DENSITY 

Starting from density operator  |𝑟  𝑟|  and applying (2) , we get: 

    
n

nnnfn r~r~~ * 

    
ji

ji

R

ij

Rn
,

*

1 rr)r( 

    
ji

ji

R

ij

Rn
,

*

1 r
~

r
~

)r(~ 


n

n

R

j

R

inn

R

ij ppf  ~~~~
On-site density matrix 
 

Governs the "on-site" parts 

n can be expressed as a function of |𝜓 𝑛  

With Smooth part evaluated on 

plane wave grid 

One-site contributions 

evaluated on radial grid 

𝑛 𝑟 = 𝑓𝑛 𝜓 𝑛 𝑟 𝑟 𝜓 𝑛 +  𝑓𝑛 𝜓 𝑛|𝑝 𝑖
𝑅 𝜙𝑖

𝑅 𝑟 𝑟 𝜙𝑗
𝑅  𝑝 𝑗

𝑅|𝜓 𝑛 

𝑖,𝑗,𝑅

−  𝑓𝑛 𝜓 𝑛|𝑝 𝑖
𝑅 𝜙 𝑖

𝑅 𝑟 𝑟 𝜙 𝑗
𝑅  𝑝 𝑗

𝑅|𝜓 𝑛 

𝑖,𝑗,𝑅

 

Can be rewritten as:          
R

RR nnnn rrrr 11
~~
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PAW – ENERGY 

Starting from kinetic operator −
1

2
Δ  and applying (2) , we get: 


n

n

R

j

R

inn

R

ij ppf  ~~~~

The same for Hartree energy and XC energy 

With Smooth part 

One-site contributions 

𝐸𝑘𝑖𝑛 = 𝑓𝑛 𝜓 𝑛 −½𝜟 𝜓 𝑛 +  𝑓𝑛 𝜓 𝑛|𝑝 𝑖
𝑅 𝜙𝑖

𝑅 −½𝜟 𝜙𝑖
𝑅  𝑝 𝑗

𝑅|𝜓 𝑛 

𝑖,𝑗,𝑅

−  𝑓𝑛 𝜓 𝑛|𝑝 𝑖
𝑅 𝜙 𝑗

𝑅 −½𝜟 𝜙 𝑗
𝑅  𝑝 𝑗

𝑅|𝜓 𝑛 

𝑖,𝑗,𝑅

 

Can be rewritten as:   
R

RkinRkinkinkin EEEE 11

~~

𝐸 𝑘𝑖𝑛 = 𝑓𝑛 𝜓 𝑛 −½𝜟 𝜓 𝑛  

𝐸𝑖
𝑘𝑖𝑛  𝑅 = 𝜌𝑖𝑗

𝑅 . 𝜙𝑖
𝑅 −½𝜟 𝜙𝑖

𝑅

𝑖,𝑗

 

𝐸 𝑖
𝑘𝑖𝑛  𝑅 = 𝜌𝑖𝑗

𝑅 . 𝜙 𝑗
𝑅 −½𝜟 𝜙 𝑗

𝑅

𝑖,𝑗
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PAW – ENERGY 

 

     ),R(rˆ~~ˆ~

~~~

2

~~

ionZcHH

cxcn

n

nn

ZUdnnnvnnE

nnEfE












       rˆ~~ˆ~~~~

2

~~
1111 dnnnvnnEnnEE R

R

R

R

ZcH

RR

H

R

c

R

xcj

ij

i

R

ij

R 


  

       r~

2
1111 dnnvnEnnEE R

R

R

ZcH

R

H

R

c

R

xci

ij

i

R

ij

R

 


 

Smooth part   evaluated on plane wave grid 

One-site contributions   evaluated on radial grid 

  
R

RR EEEE 11

~~
xcHartree

kin EEEE 

 

     ),R(rˆ~~ˆ~

~~~

2

~~

ionZcHH

cxcn

n

nn

ZUdnnnvnnE

nnEfE












       rˆ~~ˆ~~~~

2

~~
1111 dnnnvnnEnnEE R

R

R

R

ZcH

RR

H

R

c

R

xcj

ij

i

R

ij

R 


  

       r~

2
1111 dnnvnEnnEE R

R

R

ZcH

R

H

R

c

R

xci

ij

i

R

ij

R

 


 
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PAW – HAMILTONIAN 



 

 


 




















ijR

pp

R

ij

D

R

ij

v R
j

R
i

R
ij

Hxc

E
d

n

n

EEE

,

~~r~

2

1

~r~
r~

~~~d

d
H
~









 

R

j

R

ij

ji

R

iHxc pDpv
E ~~~

2

1
~d

d
H
~

,




Local + Hartree + XC potential Non-local separable potential 

 

Similar to Hamiltonian in the pseudo-potential formalism 

Non-local has a varying intensity which is different from 

an atom to another (depending on atom environment) 

Non-local potential intensity is non-diagonal 
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PAW – WAVE EQUATION 

In order to compute  

we need |𝝍 𝒏  


n

njinn

R

ij ppf  ~~~~

           
ijR

jiji

R

ij

n

nnfn
,

2
r

~
r

~
rrr~(r) 

𝝍𝒏 𝝍𝒎 = 𝜹𝒏𝒎 

𝐇|𝝍𝒏 = 𝜺𝒏|𝝍𝒏  

|𝜓𝑛 = 𝝉 |𝜓 𝑛  

𝝉 = 𝐈 + |𝜙𝑖
𝑅 − |𝜙 𝑖

𝑅  𝑝 𝑖
𝑅|

𝑖,𝑅
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PAW – WAVE EQUATION 

  R

j

R

j

R

i

R

j

R

i

ijR

R

i pp ~~~~IS
,

  

becomes: 𝐇 |𝝍 𝒏 = 𝜺𝒏 𝐒 |𝝍 𝒏  

become: 𝝍 𝒏 𝐒 𝝍 𝒏 = 𝜹𝒏𝒎 

with 

The wave equation 𝐇|𝝍𝒏 = 𝜺𝒏|𝝍𝒏  

The orthogonality conditions  𝝍𝒏 𝝍𝒎 = 𝜹𝒏𝒎 
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OUTLINE : A PAW CALCULATION 

What do we need 
 

A basis suitable to develop “smooth” auxiliary wave-functions 

A set of atomic orbitals 

A basis of pseudo-orbitals and the associated projectors 

A pseudo-potential 

 

 

Approximations 
 

The core electrons are frozen (“frozen-core”) controlled 

The plane-wave basis is truncated controlled 

The partial-wave basis is truncated controlled 

 

Note : radius of augmentation regions is not an approximation 

At basis completeness, results are independent of it 
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PAW – ADVANTAGES, DRAWBACKS 

 Advantages 

The “exact” density is computed; we have access to the “nodal” wave functions 

 high transferability (especially for magnetic systems) 

 properties depending on the density near the nucleus are accessible (ex. NMR) 

The size of the plane-wave basis is equivalent to “ultra-soft” pseudo-potentials 

(no norm constraint) 

The PAW method is as accurate as an “all-electron” method; 

Convergence can be easily controlled 

We have access to a local information around atoms 

(a “local PAW approximation” can be used ; see later) 

 Drawbacks 

Need more developments comparing to “pure” pseudo-potential formalism 
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PAW – RESULTS ON TRANSITION METALS 

Dewaele, Torrent, Loubeyre, Mezouar, PRB 78, 104102 (2008) 
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PAW VS ALL-ELECTRON – IRON 

Dewaele, Torrent, Loubeyre, Mezouar, PRB 78, 104102 (2008) 



PAW |  May. 12, 2014  |  PAGE 31 

USAGE IN ABINIT 

Use a “PAW atomic dataset” file  as “pseudopotential” file. 

Decrease value of plane-wave cut-off energy (wrt norm-conserving psps) 

Give a value for the plane-wave cut-off of the “double grid”  

(see later) 

 

PAW datasets can be downloaded from ABINIT web-site 

for (almost) the whole periodic table 

PAW datasets can be generated “on-demand” with ATOMPAW tool 



SECOND PART 

 

PAW IN DEEP 
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|𝜓𝑛 = 𝝉 |𝜓 𝑛 = |𝜓 𝑛  (1) 

Plane waves All-electron « on-site » Pseudo on-site 

~  1  ~1  

+     = -            

+ |𝜙𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅
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OUTLINE 

About partial waves basis 

Basis completeness 

PAW datasets 

Advanced concepts 

Hartree energy, charge compensation density 

Details on PAW Hamiltonian 

Double grid technique 

PAW, ultrasoft PP, norm-conserving PP 

More about PAW 

Derivatives of energy, DFPT 

Local PAW transformation and applications 

Advanced application 

 
12 mai 2014 



PAW IN DEEP 
 
 
 About partial wave basis 
 
 

|  PAGE 35 
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PAW TRANSFORMATION: HOW DOES IT OPERATE ?  

|𝜓𝑛 = The « exact » wave function is 

We define an « augmentation region » 

In the pseudo-potential 

formalism, we handle 

a pseudo wave function 

|𝜓 𝑛 = 
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PAW TRANSFORMATION: HOW DOES IT OPERATE ?  

|𝜓 𝑛                                     = 

|𝜓 𝑛 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 =

𝑖,𝑅

 

|𝜓 𝑛 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

 

+ |𝜙𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

          = 

If the partial wave  basis and the 

plane wave basis are complete, 

|𝜓 𝑛  is identical one the two basis  

inside the augmentation region 

If completeness is not perfect 
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THE « PAW ATOMIC DATASETS » 

A “PAW atomic dataset” contains 

All useful data concerning the atomic species 

The partial wave basis (atomic orbitals, pseudo-orbitals, projectors) 

Used to define the PAW linear transformation 

With PAW atomic datasets, accuracy can be controlled 

With PAW atomic datasets, efficiency can be controlled 

 

|𝜙𝑖
𝑅 , |𝜙 𝑖

𝑅 , |𝑝 𝑖
𝑅  

To be developed in the next presentation… 
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THE « PAW DATASETS » 

Nickel [1s2 2s2 2p6 3s2 3p6] 3d8 4s2 

Partial waves, pseudo partial waves and projectors… 

“Bound” state “Unbound” state 
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ABOUT THE BASIS COMPLETENESS 

Evolution of the different contributions to the Density of States 

(DoS) with respect to the size of the partial wave basis… 

|𝜓 𝑛 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

+ |𝜙𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

 
fcc Nickel 

Partial wave basis: 

1 s orbital 

1 p orbital 

1 d orbital 

Partial wave basis: 

2 s orbitals 

2 p orbitals 

2 d orbitals 

Partial wave basis: 

3 s orbitals 

3 p orbitals 

3 d orbitals 



PAW IN DEEP 
 
 
 Advanced concepts 
 
 

12 mai 2014 



PAW |  May. 12, 2014  |  PAGE 42 

Because of the loss of norm during pseudization process, the 

pseudo-densities 𝑛  and 𝑛 1 do not have the correct multipoles to 

allow a correct treatment of long-range electrostatic interaction. 

 

 

 

The computation of the electrostatic potential as sum of 2 terms 

cannot be achieved easily and converges slowly: 

 

 

COMPENSATION CHARGE DENSITY 

The electrostatic potential computation faces two difficulties 

𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝑛 𝐫 → 𝑍
𝑟  ,  where 𝑍 =  𝑛 𝐫 𝑑𝐫 

𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝐫 = 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝑛 𝐫   +  𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝑛1 𝐫 − 𝑛 1 𝐫  

Plane waves: easy Slow convergence 
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COMPENSATION CHARGE DENSITY 

         0~ˆ
11  

R

L

RR

R

L dRYRnndRYRn rrrrrrrr

𝑛 𝐫  has to fulfil the multi-pole moment condition: 

and we recover  𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 𝑛 𝐫 + 𝑛 𝐫 → 𝑍
𝑟  

One introduces  𝑛 𝐫  , located inside augmentation regions,  so that: 
 

The pseudo density has the same multipoles as the exact density, 

Doing this, we recover the norm 

The “on_site” electrostatic potential vanishes. 

            







  rrrrrr nnnnnn

R

R

R

R ˆ~ˆ~
11

VHartree=0 
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COMPENSATION CHARGE DENSITY 

   

 

 
LRji

L

ij

LL

L

ij

R

ij

Q

RgRYqn
,),,(

ˆ

)(ˆ
  

r

rrr 

We define: 

1)( 2  drrrrg
R

l

L

g : analytical  “shape” 
function 

 

  r)Rr(Rr)r(
~

)r(
~

)r()r( dYq L

l

R

jiji

L

ij   

Norm recovery 

Loss of norm 
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HARTREE ENERGY 

Hartree energy becomes: 

𝐸𝐻 = 𝐸 𝐻 − 𝐸 1
𝐻 + 𝐸1

𝐻 = 𝐸 𝐻 𝑛 + 𝑛 + −𝐸 1
𝐻 𝑛 1

𝑅 + 𝑛 + 𝐸1
𝐻 𝑛1

𝑅

𝐑

 

𝑛𝑇 = 𝑛 + 𝑛 + 𝑛1 − 𝑛 1 + 𝑛 = 𝑛 𝑇 + 𝑛𝑇1 − 𝑛 𝑇1 𝑛1 = 𝑛1
𝑅

𝐑

 𝑛 1 = 𝑛 1
𝑅

𝐑

 

𝐸𝐻  =
1

2
 
𝑛𝑇 𝐫 𝑛𝑇 𝐫′

𝐫 − 𝐫′
=
1

2
𝑛𝑇 𝑛𝑇  

      =
1

2
𝑛 𝑇 𝑛 𝑇  + 𝑛𝑇1 − 𝑛 𝑇1 𝒏 𝑻  + 

1

2
𝑛𝑇1 − 𝑛 𝑇1 𝑛𝑇1 − 𝑛 𝑇1  

Approximation: in (2), 𝑛 𝑇 is replaced by 𝑛 𝑇1   

(1) (2) (3) 

𝐸𝐻 =
1

2
𝑛 𝑇 𝑛 𝑇 −

1

2
𝑛 𝑇1 𝑛 𝑇1 +

1

2
𝑛𝑇1 𝑛𝑇1  

(basis completeness is assumed) 
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PAW HAMILTONIAN - DETAILS 

R

j

R

ij

ji

R

iHxc pDpv
E ~~~

2

1
~d

d
H
~

,




𝐷𝑖𝑗
𝑅 = 𝜙𝑖

𝑅 −½Δ+ 𝑣𝐻𝑥𝑐 𝑛1
𝑅; 𝑛𝑐 𝜙𝑖

𝑅 − 𝜙 𝑗
𝑅 −½Δ+ 𝑣 𝐻𝑥𝑐 𝑛 1

𝑅; 𝑛 𝑐 𝜙 𝑗
𝑅  

𝐷𝑖𝑗
𝑅  is the expression of H in the partial wave basis: 
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Example of a formal calculation: 

Gaunt coefficient 

Spherical harmonics 
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PAW HAMILTONIAN - DETAILS 

This leads to: 

 
L

L

ijeff

xc

ij

kl

ijklklijij dQvDEDD rrr )(ˆ)(~0 

atomic Hartree 
Exchange- 
correlation 

Charge 
compensation 

 r~
effv is a "local" potential: 

Nucleus+electrons Electrons 

R

j

R

ij

ji

R

ieff pDpv
E ~~~

2

1
~d

d
H
~

,




   cxcZcHeff nnnvnnnvv ~ˆ~~ˆ~~    cxcZcHeff nnnvnnnvv ~ˆ~~ˆ~~ 
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PAW HAMILTONIAN – ON-SITE XC POTENTIAL 


LM

LMLM Srnrn ),()(),,(1 

     
 

 02

22

0
000

2

)()(
)()()(),()(),,( n

dn

vdrnrn
n

dn

dv
rnrnrnvYrvrv xcxc

xc

LM

LM

xc

LMxc


 

  

OR 
Direct computation 

on spherical grid 
Development in moments 

Accurate 
CPU expensive 

Approximated 

All on−site quantities, including potentials, 
can be expanded over "real spherical harmonics": 

In the case of the XC potential, it is possible to use a Taylor series around 
the spherical density: 

This is a very good approximation 

This is computationally efficient 
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« DOUBLE GRID » TECHNIQUE 

If only the « coarse » FFT grid 
is used, not enough points are 
in augmentation regions  

)(~)(~)(~)(~ rnGnGnrn fine

FFT

finecoarse

FFT

coarse




« Double FFT » technique used to transfer densities/potentials between grids: 

A « coarse » FFT grid is used to represent PS wave-functions  

The compensation charge is needed on the FFT grid (regular grid) and on the grid 

used to describe augmentation regions (radial grid) 

For accuracy, an auxiliary fine FFT grid is used 

to compute densities and  potentials 
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PAW  VS  PSEUDOPOTENTIALS 

Linearisation of ij around atomic occupations in the spheres 

in the total energy expression leads to: 

r)r(ˆ)r(~
,

,0 dQvDD
L

L

jieff

US

ijij  Ultrasoft pseudopotential 
formulation 

 
L

L

ijeff

xc

ij

kl

ijklklijij dQvDEDD rrr )(ˆ)(~0 R

j

R

ij

ji

R

ieff pDpv
E ~~~

2

1
~d

d
H
~

,




From PAW to ultrasoft pseudo-potentials 

From PAW to norm-conserving pseudo-potentials 

0)(ˆ
, rQL

ji

KB

ijij DD ,0 Norm-conserving  pseudopotential 
formulation 

The norm of partial waves is equal to 

the norm of pseudo partial waves 



PAW IN DEEP 
 
 
 More about PAW 
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DERIVATIVES OF ENERGY 

  
R

RR EEEE 11

~~

In this term, the non-local 

contribution is self-consistent 

(depends on VHxc) These terms are new, 

but they are attached to the atomic sites 

n

V

n

n

n

Hxc

H
f

d

dE





 )0(

~




 

Hellmann-Feynman theorem 
 

First derivative of energy 
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DERIVATIVES OF E – CHAINS OF DEPENDENCIES 
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Identifying where the WF 

appear in the energy formula 

In grey: norm-conserving  
psps terms 
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FORCES AND STRESS TENSOR 
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DERIVATIVES OF ENERGY OF HIGHER LEVEL 

 

We need the Density-Functional Perturbation Theory 
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2n+1 theorem (Gonze et al, 1995) 

Sternheimer equation gives first-order wave function 

(new terms appear for PAW) 
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DERIVATIVES OF ENERGY OF HIGHER LEVEL 

 

Just an idea of the complexity of DFPT formula 

2nd derivative of non-local energy with respect to 

displacements of atom a in  and  directions 

In grey: norm-conserving 
psps terms 

Audouze, Jollet, Torrent, Gonze, Phys. Rev. B 73, 235101 (2006) 

Audouze, Jollet, Torrent, Gonze, Phys. Rev. B 78, 035105 (2008) 
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LOCAL PAW TRANSFORMATION 

APPROXIMATION 1 The plane-wave and the partial wave basis 

are complete 

|𝜓 𝑛 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 =

𝑖,𝑅

 = zero 
 

inside augmentation 

regions 

APPROXIMATION 2 The main part of the density is contained 

inside PAW augmentation regions 

|𝜓 𝑛 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 =

𝑖,𝑅

 = zero 
 

outside augmentation 

regions 
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LOCAL PAW TRANSFORMATION 

|𝜓𝑛 = 𝝉 |𝜓 𝑛 = |𝜓 𝑛  + |𝜙𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

 − |𝜙 𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

 

If the two previous approximations are valid, 

the PAW transformation 

Reduces to 

|𝜓𝑛 = 𝝉 |𝜓 𝑛 ≈  |𝜙𝑖
𝑅  𝑝 𝑖

𝑅|𝜓 𝑛 

𝑖,𝑅

 

« Local PAW transformation » 
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LOCAL PAW TRANSFORMATION 

When is it valid ? 

When the plane-wave cut-off energy is large enough 

When the partial wave basis contains enough elements 

When the radius of augmentation regions is large enough 

When the electronic density is localized around the nuclei 

Typical application 

Any properties applying to “correlated electrons” 

Used in ABINIT for LDA+U, for local hybrid XC functionals, … 
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LOCAL PAW TRANSFORMATION 

When the local PAW transformation is valid, 

any new contribution to the Hamiltonian 

applies only in “on-site” contributions: 

 

Specific expression for the Hamiltonian 

  R

jijij

ji

R

ieff pDDpv ~~~

2

1
H
~

,

 

𝐷𝑖𝑗
𝑈 = 𝜙𝑖

𝑅 ∆𝐇𝑈 𝜙𝑖
𝑅  

Easy to implement ! 

No need of specific “PAW datasets” 

See tomorrow lecture on LDA+U… 
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PAW: ADVANCED APPLICATION 

An example needing the accuracy of PAW  
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Zwanziger, Torrent, Appl. Magn. Reson. 33, 447 (2008) 

   
R

RR nnV 11
~,R

Electric field Gradient 

Mandatory to get correct results 
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