THE «PROJECTOR AUGMENTED-WAVE » METHOD

Marc Torrent, François Jollet

CEA-Bruyères-le-Châtel, France
Theoretical and Applied Physics Department

« The Projector Augmented-Wave method is an extension of augmented wave methods and the pseudopotential approach, which combine their traditions into a unified electronic structure method»

Peter Blöchl, Physical Review B 50, 17953 (1994)

FIRST PART

PAW BASICS

OUTLINE

Before PAW

A bit of history
Pseudopotentials, « all-electrons », basis, ... How to combine the best of each world?

The PAW formalism
The PAW approach
The PAW linear transformation
Charge density, Hamiltonian, Energy, ...
Approximations, advantages, ...

How to use PAW in ABINIT

PAW BASICS

Before PAW

PERFORMING A DFT CALCULATION

A self-consistent set of equations

$$
\begin{aligned}
\rho(\mathrm{r}) & =\sum_{n} f_{n}\left|\psi_{n}(\mathrm{r})\right|^{2} \text {, where }\left|\psi_{n}\right\rangle \text { satisfies } \\
& \left(-\frac{1}{2} \nabla^{2}+V_{H}[\rho]+V_{x c}[\rho]+V_{\text {ext }}+V_{\text {pseudo }}\right)\left|\psi_{n}\right\rangle=\varepsilon_{n}\left|\psi_{n}\right\rangle
\end{aligned}
$$

To solve these Kohn-Sham equations, need
= An exchange-correlation functional

- A basis set for expressing the wave-functions $\left|\psi_{n}\right\rangle$
- An (iterative) algorithm for finding the wave-functions

BASIS SETS

The wave functions are developped on a basis which can be...

Localized

Spherical harmonics, Gaussians, Atomic orbitals, ...

- Few functions (per atom) in the basis
- All the electron wave-functions can be represented, even highly localized ones
- Accurate results, but heavy calculations
- Difficult to manipulate:

The basis moves with atoms

- Many functions in the basis especially to represent localized wave-functions
- Easy to converge (systematic)
- More adapted to periodic systems

Adaptive

Wavelets, ...

Plane waves, ...

PSEUDOPOTENTIALS

Assumption: for chemical properties only valence electrons are relevant...
Replace the potential due to the nucleus and the core electrons by a smooth potential

- Eliminate (from the bond) the chemically inactive core electrons
- Reduce the number of electron orbitals to compute explicitely
II Eliminate the rapid variations of the potential in the core region
- Manipulate a smooth pseudo-wavefunction for each valence electron

$$
V_{\text {ext }}(\mathbf{r})=-\frac{1}{4 \pi \varepsilon_{0}} \sum_{\alpha} \frac{Z_{\alpha}}{\left|\mathbf{R}_{\alpha}-\mathbf{r}\right|}
$$

FROZEN-CORE + PSEUDOPOTENTIAL

A reasonable approximation...
... but not perfect

PSEUDOPOTENTIALS

- 1979-1982: BHS pseudopotentials (Bachelet, Hamann, Sch/üter)
- 1982: Separable pseudopotentials (Kleinman, Bylander)
- 1990: efficient pseudopotentials (Martins, Troullier)
- 1991: ultrasoft pseudopotentials
(Vanderbilt)

Separable from...

$$
V^{P P}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\underbrace{V_{\text {loc }}(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}_{\text {local part }}+\underbrace{\sum_{n, l, m}\left|\phi_{n l m}(\mathbf{r})>E_{n l}^{K B}<\phi_{n / m}\left(\mathbf{r}^{\prime}\right)\right|}_{\text {non-local }}
$$

where $\left|\phi_{n / m}\right\rangle$ is a projector (pseudo-wavefunction) I, m, n are quantum numbers.

PSEUDOPOTENTIALS AND PLANE WAVES

With pseudopotentials, the smoothed potential can be expressed on a (relatively) small plane wave basis...

■ $\left(V^{\text {nucleus }}+V^{\text {core electrons }}\right)$ replaced by $\tilde{V}^{P P}$

- Solve: $\tilde{\mathrm{H}}\left|\tilde{\psi}_{n}\right\rangle=\varepsilon_{n}\left|\tilde{\psi}_{n}\right\rangle \quad$ with: $\quad \tilde{\mathrm{H}}=-\frac{1}{2} \Delta+V_{\text {Hartree }}+V_{X C}+V_{\text {eff }}+\tilde{V}^{P P}$
- Take $\left|\tilde{\psi}_{n}\right\rangle$ as a reasonable approximation for $\left|\psi_{n}\right\rangle$

GOING BEYOND PSEUDOPOTENTIALS ?

We want to keep from pseudopotential scheme...

- The frozen core electrons
- The use of auxiliary smooth quantities (potential, wave functions) - As smooth as possible
\longrightarrow Use plane waves
Limit basis size

We want also ...

- To be able to represent the nodal structure of "exact" Reach accuracy even near nuclei wave-functions around the nucleus
- To use a basis as convenient as possible: Adapted to charge density and easy to use

cea
 THE BEST OF EACH WORLD

Treat both rapid oscillations and smooth sections of the wave functions Use two basis (augmented wave)

Find a connection between the smooth auxilliary wave function and the exact one

$$
\left|\psi_{n}\right\rangle=\tau\left|\tilde{\psi}_{n}\right\rangle
$$

PAW BASICS

The PAW formalism

THE PROJECTOR AUGMENTED-WAVE METHOD

Key features of PAW

- Frozen core approximation:
only valence electrons are taken into account in the calculation
- The interaction between valence electrons and the ionic core is taken into account within a pseudopotential without norm constraint
- Several basis are mixed: planes waves and local (atomic) orbitals

THE PAW LINEAR TRANSFORMATION

In search of a linear (and inversible) transformation τ so that

"Exact» wave function	"Auxilliary " smooth wave function		
Strong oscillations near the nucleus	$\left\|\Psi_{n}\right\rangle=\tau\left\|\tilde{\Psi}_{n}\right\rangle$		No oscillation
:---:			
near the nucleus			

Used to compute accurate properties

Manipulated by the DFT code (SCF cycle)

Developed on plane waves in ABINIT

THE PAW LINEAR TRANSFORMATION

1- Define non-overlapping spherical regions around atoms \mathbf{R} (augmentation regions)

In search of τ as a sum of local transformations :

$$
\boldsymbol{\tau}=\mathbf{I}+\sum_{\mathbf{R}} S_{\mathbf{R}} \quad\left|\psi_{n}\right\rangle=\tau\left|\tilde{\psi}_{n}\right\rangle=\left|\tilde{\psi}_{n}\right\rangle+\sum_{R} S_{R}\left|\tilde{\psi}_{n}\right\rangle
$$

2- In each augmentation region around \mathbf{R}, define a partial wave basis $\left|\phi_{i}^{R}\right\rangle$

A good choice : atomic orbitals
(solutions of atomic Schrödinger equation, in augmentation region)

3- For each partial wave, define a « soft » pseudo partial wave basis $\left|\tilde{\phi}_{i}^{R}\right\rangle$
$\left|\tilde{\phi}_{i}^{R}\right\rangle$ matches $\left|\phi_{i}^{R}\right\rangle$ at augmentation region boundary

THE PAW LINEAR TRANSFORMATION

4- It is easy to obtain an expression of τ applied to $\left|\tilde{\phi}_{i}^{R}\right\rangle$:

$$
\begin{aligned}
\left|\phi_{i}^{R}\right\rangle=\tau\left|\tilde{\phi}_{i}^{R}\right\rangle & =\left(\mathbf{I}+\sum_{\mathbf{R}} S_{\mathbf{R}}\right)\left|\tilde{\phi}_{i}^{R}\right\rangle=\left|\tilde{\phi}_{i}^{R}\right\rangle+\left(\left|\phi_{i}^{R}\right\rangle-\left|\tilde{\phi}_{i}^{R}\right\rangle\right) \\
S_{\mathbf{R}}\left|\tilde{\phi}_{i}^{R}\right\rangle & =\left(\left|\phi_{i}^{R}\right\rangle-\left|\tilde{\phi}_{i}^{R}\right\rangle\right)
\end{aligned}
$$

5- Let's define the $\left|\tilde{p}_{i}^{R}\right\rangle$ as duals of $\left|\tilde{\phi}_{i}^{R}\right\rangle$:

$$
\left\langle\tilde{p}_{i}^{R} \mid \tilde{\phi}_{j}^{R^{\prime}}\right\rangle=\delta_{R R^{\prime}} \delta_{i j}
$$

$\left|\tilde{p}_{i}^{R}\right\rangle=0$ outside the augmentation region
If the $\left|\tilde{\phi}_{i}^{R}\right\rangle$ are a complete (non-orthogonal) basis,
the closure relation is:

$$
\mathbf{I}=\sum_{i}\left|\tilde{\phi}_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R}\right|
$$

THE PAW LINEAR TRANSFORMATION

6- If the $\left|\tilde{\phi}_{i}^{R}\right\rangle$ are a complete basis, the wave functions $\left|\tilde{\psi}_{n}\right\rangle$ can be developed as:

$$
\left|\tilde{\psi}_{n}\right\rangle=\sum_{i}\left|\tilde{\phi}_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

Then

$$
S_{\mathrm{R}}\left|\tilde{\psi}_{n}\right\rangle=\sum_{i} S_{\mathrm{R}}\left|\tilde{\phi}_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle=\sum_{i}\left(\left|\phi_{i}^{R}\right\rangle-\left|\tilde{\phi}_{i}^{R}\right\rangle\right)\left\langle\hat{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

We finally get the expression of the transformation τ :

$$
\begin{aligned}
& \left|\psi_{n}\right\rangle=\left|\tilde{\psi}_{n}\right\rangle+\sum_{i, R}\left(\left|\phi_{i}^{R}\right\rangle-\left|\tilde{\phi}_{i}^{R}\right\rangle\right)\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle \\
& \boldsymbol{\tau}=\mathbf{I}+\sum_{i, R}\left(\left|\phi_{i}^{R}\right\rangle-\left|\tilde{\phi}_{i}^{R}\right\rangle\right)\left\langle\tilde{p}_{i}^{R}\right| \quad i=(R, l, m, n)
\end{aligned}
$$

THE PAW LINEAR TRANSFORMATION

THE PAW TRANSFORMATION FOR OPERATORS

Expectation value of an operator

$$
\langle A\rangle=\sum_{n} f_{n}\left\langle\Psi_{n}\right| A\left|\Psi_{n}\right\rangle=\sum_{n} f_{n}\left\langle\tilde{\Psi}_{n}\right| \tau^{*} A \tau\left|\tilde{\Psi}_{n}\right\rangle
$$

For a "quasi-local" operator

$$
\langle A\rangle=\langle\tilde{A}\rangle+\sum_{R}\left(\langle A\rangle_{1}^{R}-\langle\tilde{A}\rangle_{1}^{R}\right)
$$

PAW « on-site» contributions

Completeness assumed!

Applicable to...
E Density operator $|r\rangle\langle r| \quad \rightarrow \quad$ charge density

- Kinetic operator $-\frac{1}{2} \Delta \quad \rightarrow \quad$ kinetic energy
- Hartree potential $\mathrm{V}_{\mathrm{XC}} \rightarrow$ Hartree energy
\square XC potential $\quad \mathrm{V}_{\mathrm{H}} \quad \rightarrow \quad$ XC energy

PAW - CHARGE DENSITY

Starting from density operator $|r\rangle\langle r|$ and applying (2) , we get:

$$
n(r)=f_{n}\left\langle\tilde{\psi}_{n} \mid r\right\rangle\left\langle r \mid \tilde{\psi}_{n}\right\rangle+\sum_{i, j, R} f_{n}\left\langle\tilde{\psi}_{n} \mid \tilde{p}_{i}^{R}\right\rangle\left\langle\phi_{i}^{R} \mid r\right\rangle\left\langle r \mid \phi_{j}^{R}\right\rangle\left\langle\tilde{p}_{j}^{R} \mid \tilde{\psi}_{n}\right\rangle-\sum_{i, j, R} f_{n}\left\langle\tilde{\psi}_{n} \mid \tilde{p}_{i}^{R}\right\rangle\left\langle\tilde{\phi}_{i}^{R} \mid r\right\rangle\left\langle r \mid \tilde{\phi}_{j}^{R}\right\rangle\left\langle\tilde{p}_{j}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

Can be rewritten as:

$$
n(\mathbf{r})=\tilde{n}(\mathbf{r})+\sum_{R}\left(n_{1}^{R}(\mathbf{r})-\tilde{n}_{1}^{R}(\mathbf{r})\right)
$$

With

$$
\begin{gathered}
\tilde{n}=\sum_{n} f_{n} \cdot \tilde{\psi}_{n}^{*}(\mathrm{r}) \cdot \tilde{\psi}_{n}(\mathrm{r}) \\
n_{1}^{R}(\mathrm{r})=\sum_{i, j} \rho_{i j}^{R} \cdot \phi_{i}^{*}(\mathrm{r}) \cdot \phi_{j}(\mathrm{r}) \\
\tilde{n}_{1}^{R}(\mathrm{r})=\sum_{i, j} \rho_{i j}^{R} \cdot \tilde{\phi}_{i}^{*}(\mathrm{r}) \cdot \tilde{\phi}_{j}(\mathrm{r})
\end{gathered}
$$

Smooth part evaluated on plane wave grid

One-site contributions
evaluated on radial grid

On-site density matrix

Governs the "on-site" parts

Ce2 PAW - ENERGY

Starting from kinetic operator $-\frac{1}{2} \Delta$ and applying (2) , we get:

$$
E^{k i n}=f_{n}\left\langle\tilde{\psi}_{n}\right|-1 / 2 \Delta\left|\tilde{\psi}_{n}\right\rangle+\sum_{i, j, R} f_{n}\left\langle\tilde{\psi}_{n} \mid \tilde{p}_{i}^{R}\right\rangle\left\langle\phi_{i}^{R}\right|-1 / 2 \Delta\left|\phi_{i}^{R}\right\rangle\left\langle\tilde{p}_{j}^{R} \mid \tilde{\psi}_{n}\right\rangle-\sum_{i, j, R} f_{n}\left\langle\tilde{\psi}_{n} \mid \tilde{p}_{i}^{R}\right\rangle\left\langle\tilde{\phi}_{j}^{R}\right|-1 / 2 \Delta\left|\tilde{\phi}_{j}^{R}\right\rangle\left\langle\tilde{p}_{j}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

Can be rewritten as: $\quad E^{k i n}=\widetilde{E}^{k i n}+\sum_{R}\left(E_{1}^{k i n R}-\widetilde{E}_{1}^{k i n R}\right)$

$$
\begin{aligned}
& \text { With } \left.\quad \begin{array}{rl}
\tilde{E}^{k i n} & =f_{n}\left\langle\tilde{\psi}_{n}\right|-1 / 2 \Delta\left|\tilde{\psi}_{n}\right\rangle \\
\qquad & E_{i}^{k i n R}=\sum_{i, j} \rho_{i j}^{R} \cdot\left\langle\phi_{i}^{R}\right|-1 / 2 \Delta\left|\phi_{i}^{R}\right\rangle \\
\tilde{E}_{i}^{k i n ~} R & =\sum_{i, j} \rho_{i j}^{R} \cdot\left\langle\tilde{\phi}_{j}^{R}\right|-1 / 2 \Delta\left|\tilde{\phi}_{j}^{R}\right\rangle
\end{array}\right\}
\end{aligned}
$$

Smooth part

One-site contributions

$$
\rho_{i j}^{R}=\sum_{n} f_{n}\left\langle\tilde{\psi}_{n} \mid \tilde{p}_{i}^{R}\right\rangle\left\langle\tilde{p}_{j}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

The same for Hartree energy and XC energy

PAW - ENERGY

$$
E=E^{k i n}+E_{\text {Hartree }}+E_{x c}
$$

$$
E=\tilde{E}+\sum_{R}\left(E_{1}^{R}-\tilde{E}_{1}^{R}\right)
$$

Smooth part evaluated on plane wave grid

$$
\begin{aligned}
\tilde{E}= & \sum_{n} f_{n}\left\langle\tilde{\Psi}_{n}\right|-\frac{\Delta}{2}\left|\tilde{\Psi}_{n}\right\rangle+E_{x c}\left[\tilde{n}+\tilde{n}_{c}\right] \\
& +E_{H}[\widetilde{n}+\hat{n}]+\int v_{H}\left[\tilde{n}_{z c}\right][\tilde{n}+\hat{n}] d \mathrm{r}+U\left(\mathrm{R}, Z_{i o n}\right)
\end{aligned}
$$

One-site contributions evaluated on radial grid

$$
\begin{aligned}
& E_{1}^{R}=\sum_{i j} \rho_{i j}^{R}\left\langle\phi_{i}\right| \frac{-\Delta}{2}\left|\phi_{i}\right\rangle+E_{x c}\left[n_{1}^{R}+n_{c}^{R}\right]+E_{H}\left[n_{1}^{R}\right]+\int_{R} v_{H}\left[\tilde{n}_{z c}^{R}\left[n_{1}^{R}\right] d \mathrm{r}\right. \\
& \tilde{E}_{1}^{R}=\sum_{i j} \rho_{i j}^{R}\left\langle\tilde{\phi}_{i}\right| \frac{-\Delta}{2}\left|\tilde{\phi}_{j}\right\rangle+E_{x c}\left[\tilde{n}_{1}^{R}+\tilde{n}_{c}^{R}\right]+E_{H}\left[\tilde{n}_{1}^{R}+\hat{n}^{R}\right]+\int_{R} v_{H}\left[\tilde{n}_{z c}^{R}\left[\tilde{n}_{1}^{R}+\hat{n}_{R}\right] d \mathrm{r}\right.
\end{aligned}
$$

cea
 PAW - HAMILTONIAN

$$
\begin{gathered}
\tilde{\mathrm{H}}=\frac{\mathrm{d} E}{\mathrm{~d} \tilde{\rho}}=\underbrace{\frac{\partial E}{\partial \tilde{\rho}}}_{-\frac{1}{2} \Delta}+\underbrace{\int \frac{\delta E}{\delta \tilde{n}} \frac{\partial \tilde{n}(\mathrm{r})}{\partial \tilde{\rho}} d}_{\tilde{v}_{H x c}(\mathrm{r})} \mathrm{r}+\sum_{R, i j} \frac{\partial E}{\frac{\partial E}{\partial \rho_{i j}^{R}}} \underbrace{\frac{\partial \rho_{i j}^{R}}{\partial \tilde{\rho}}}_{D_{i j}^{R}} \underbrace{\mathrm{H}=\frac{\mathrm{d} E}{\mathrm{~d} \tilde{\rho}}=-\frac{1}{2} \Delta+\tilde{v}_{H x c}+\sum_{i, j}\left|\tilde{p}_{i}^{R}\right\rangle D_{i j}^{R}\left\langle\tilde{p}_{j}^{R}\right|}_{\left.\tilde{p}_{i}^{R}\right\rangle\left\langle\tilde{p}_{j}^{R}\right|} \\
\text { Local + Hartree + XC potential } \quad \text { Non-local separable potential }
\end{gathered}
$$

- Similar to Hamiltonian in the pseudo-potential formalism
- Non-local has a varying intensity which is different from an atom to another (depending on atom environment)
- Non-local potential intensity is non-diagonal

cea
 PAW - WAVE EQUATION

In order to compute $\left\{\begin{array}{l}n(\mathrm{r})=\sum_{n} f_{n}\left|\widetilde{\psi}_{n}(\mathrm{r})\right|^{2}+\sum_{R, i j} \rho_{i j}^{R}\left(\phi_{i}(\mathrm{r}) \phi_{j}(\mathrm{r})-\tilde{\phi}_{i}(\mathrm{r}) \tilde{\phi}_{j}(\mathrm{r})\right) \\ \rho_{i j}^{R}=\sum_{n} f_{n}\left\langle\tilde{\psi}_{n} \mid \tilde{p}_{i}\right\rangle\left\langle\tilde{p}_{j} \mid \widetilde{\psi}_{n}\right\rangle\end{array}\right.$
we need $\left|\widetilde{\boldsymbol{\psi}}_{n}\right\rangle$

$$
\begin{aligned}
& \mathbf{H}\left|\boldsymbol{\psi}_{\boldsymbol{n}}\right\rangle=\boldsymbol{\varepsilon}_{\boldsymbol{n}}\left|\boldsymbol{\psi}_{\boldsymbol{n}}\right\rangle \\
& \left\langle\boldsymbol{\psi}_{\boldsymbol{n}} \mid \boldsymbol{\psi}_{\boldsymbol{m}}\right\rangle=\boldsymbol{\delta}_{\boldsymbol{n} \boldsymbol{m}} \\
& \left|\psi_{\boldsymbol{n}}\right\rangle=\boldsymbol{\tau}\left|\tilde{\psi}_{n}\right\rangle \\
& \boldsymbol{\tau}=\mathbf{I}+\sum_{i, R}\left(\left|\phi_{i}^{R}\right\rangle-\left|\tilde{\phi}_{i}^{R}\right\rangle\right)\left\langle\tilde{p}_{i}^{R}\right|
\end{aligned}
$$

cea
 PAW - WAVE EQUATION

■ The wave equation $\mathbf{H}\left|\boldsymbol{\psi}_{n}\right\rangle=\boldsymbol{\varepsilon}_{\boldsymbol{n}}\left|\boldsymbol{\psi}_{\boldsymbol{n}}\right\rangle$
becomes:

$$
\widetilde{\mathbf{H}}\left|\widetilde{\psi}_{n}\right\rangle=\varepsilon_{n} S\left|\widetilde{\psi}_{n}\right\rangle
$$

\square The orthogonality conditions $\left\langle\boldsymbol{\psi}_{n} \mid \boldsymbol{\psi}_{\boldsymbol{m}}\right\rangle=\boldsymbol{\delta}_{\boldsymbol{n} \boldsymbol{m}}$
become:

$$
\left\langle\tilde{\psi}_{n}\right|\left|\tilde{\psi}_{n}\right\rangle=\delta_{n m}
$$

with

$$
\mathrm{S}=\mathrm{I}+\sum_{R, i j}\left|\tilde{p}_{i}^{R}\right\rangle\left(\left\langle\phi_{i}^{R} \mid \phi_{j}^{R}\right\rangle-\left\langle\tilde{\phi}_{i}^{R} \mid \widetilde{\phi}_{j}^{R}\right\rangle\right)\left\langle\tilde{p}_{j}^{R}\right|
$$

OUTLINE : A PAW CALCULATION

What do we need

E A basis suitable to develop "smooth" auxiliary wave-functions

- A set of atomic orbitals
- A basis of pseudo-orbitals and the associated projectors
- A pseudo-potential

Approximations

- The core electrons are frozen ("frozen-core") controlled
- The plane-wave basis is truncated
controlled
- The partial-wave basis is truncated
controlled

Note : radius of augmentation regions is not an approximation
At basis completeness, results are independent of it

PAW - ADVANTAGES, DRAWBACKS

Advantages

E The "exact" density is computed; we have access to the "nodal" wave functions
\rightarrow high transferability (especially for magnetic systems)
\rightarrow properties depending on the density near the nucleus are accessible (ex. NMR)
■ The size of the plane-wave basis is equivalent to "ultra-soft" pseudo-potentials (no norm constraint)

- The PAW method is as accurate as an "all-electron" method; Convergence can be easily controlled
- We have access to a local information around atoms (a "local PAW approximation" can be used ; see later)

Drawbacks

- Need more developments comparing to "pure" pseudo-potential formalism

PAW - RESULTS ON TRANSITION METALS

Dewaele, Torrent, Loubeyre, Mezouar, PRB 78, 104102 (2008)

cea
 PAW VS ALL-ELECTRON - IRON

- Exp. (this work)
- all-electron GGA

A all-electron LDA
PAW GGA

- PAW GGA with semicore
- - - PAW LDA
- PAW LDA with semicore

USAGE IN ABINIT

■ Use a "PAW atomic dataset" file as "pseudopotential" file.
■ Decrease value of plane-wave cut-off energy (wrt norm-conserving psps)

- Give a value for the plane-wave cut-off of the "double grid" (see later)
- PAW datasets can be downloaded from ABINIT web-site for (almost) the whole periodic table

■ PAW datasets can be generated "on-demand" with ATOMPAW tool

SECOND PART

PAW IN DEEP

About partial waves basis
Basis completeness
PAW datasets
Advanced concepts
Hartree energy, charge compensation density
Details on PAW Hamiltonian
Double grid technique
PAW, ultrasoft PP, norm-conserving PP
More about PAW
Derivatives of energy, DFPT
Local PAW transformation and applications
Advanced application

PAW IN DEEP

About partial wave basis

PAW TRANSFORMATION: HOW DOES IT OPERATE ?

The «exact» wave function is

We define an «augmentation region »

In the pseudo-potential formalism, we handle a pseudo wave function

PAW TRANSFORMATION: HOW DOES IT OPERATE ?

THE « PAW ATOMIC DATASETS »

A "PAW atomic dataset" contains

$$
\left|\phi_{i}^{R}\right\rangle,\left|\tilde{\phi}_{i}^{R}\right\rangle,\left|\tilde{p}_{i}^{R}\right\rangle
$$

- All useful data concerning the atomic species

The partial wave basis (atomic orbitals, pseudo-orbitals, projectors)
Used to define the PAW linear transformation

- With PAW atomic datasets, accuracy can be controlled
- With PAW atomic datasets, efficiency can be controlled

To be developed in the next presentation...

THE « PAW DATASETS »

Partial waves, pseudo partial waves and projectors...
Nickel $\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 3 d^{8} 4 s^{2}$

ABOUT THE BASIS COMPLETENESS

Evolution of the different contributions to the Density of States
(DoS) with respect to the size of the partial wave basis...

$$
\left|\tilde{\psi}_{n}\right\rangle-\sum_{i, R}\left|\tilde{\phi}_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle+\sum_{i, R}\left|\phi_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

Partial wave basis:
1 s orbital
1 p orbital
1 d orbital

Partial wave basis:
2 s orbitals
$2 p$ orbitals
2 d orbitals

3 s orbitals
$3 p$ orbitals
3 d orbitals

PAW IN DEEP

Advanced concepts

12 mai 2014

COMPENSATION CHARGE DENSITY

The electrostatic potential computation faces two difficulties

- Because of the loss of norm during pseudization process, the pseudo-densities \tilde{n} and \tilde{n}_{1} do not have the correct multipoles to allow a correct treatment of long-range electrostatic interaction.
$V_{\text {Hartree }}(\tilde{n}(\mathbf{r})) \nless^{Z / r}$, where $Z=\int n(\mathbf{r}) d \mathbf{r}$
- The computation of the electrostatic potential as sum of 2 terms cannot be achieved easily and converges slowly:

COMPENSATION CHARGE DENSITY

One introduces $\hat{n}(\mathbf{r})$, located inside augmentation regions, so that:
■ The pseudo density has the same multipoles as the exact density, Doing this, we recover the norm

■ The "on_site" electrostatic potential vanishes.

$$
n(\mathbf{r})=(\tilde{n}(\mathbf{r})+\hat{n}(\mathbf{r}))+\underbrace{\sum_{R} n_{1}^{R}(\mathbf{r})-\left(\sum_{R} \tilde{n}_{1}^{R}(\mathbf{r})+\hat{n}(\mathbf{r})\right)}_{\text {VHartree }=0}
$$

$\hat{n}(\mathbf{r})$ has to fulfil the multi-pole moment condition:

$$
\int_{R} \hat{n}(\mathbf{r}) \cdot|\mathbf{r}-R| \cdot Y_{L}(\mathbf{r}-R) \cdot d \mathbf{r}=\int_{R}\left(n_{1}^{R}-\tilde{n}_{1}^{R}\right)(\mathbf{r}) \cdot|\mathbf{r}-R| \cdot Y_{L}(\mathbf{r}-R) \cdot d \mathbf{r}=0
$$

$$
\text { and we recover } V_{\text {Hartree }}(\tilde{n}(\mathbf{r})+\hat{n}(\mathbf{r})) \rightarrow Z / r
$$

Cea compensation charge density

We define:

$$
\hat{n}(\mathbf{r})=\sum_{(i, j, R, L} \rho_{i j}^{R} \underbrace{q_{i j}^{L} Y_{L}(\mathbf{r}-R) g_{L}(|\mathbf{r}-R|)}_{\hat{Q}_{i j}^{L}(\mathbf{r})}
$$

Norm recovery

$$
q_{i j}^{L}=\int_{R} \underbrace{\left[\phi_{i}(\mathrm{r}) \phi_{j}(\mathrm{r})-\tilde{\phi}_{i}(\mathrm{r}) \tilde{\phi}_{j}(\mathrm{r})\right.}_{\text {Loss of norm }}] \cdot|\mathrm{r}-\mathrm{R}|^{l} \cdot Y_{L}(\mathrm{r}-\mathrm{R}) \cdot d \mathrm{r}
$$

g : analytical "shape" function

$$
\int_{R} g_{L}(r) r^{l} r^{2} d r=1
$$

HARTREE ENERGY

$$
\begin{align*}
& n_{T}=(\tilde{n}+\hat{n})+\left(n_{1}\right)-\left(\tilde{n}_{1}+\hat{n}\right)=\tilde{n}_{T}+n_{T 1}-\tilde{n}_{T 1} \quad n_{1}=\sum_{\mathbf{R}} n_{1}^{R} \quad \tilde{n}_{1}=\sum_{\mathbf{R}} \tilde{n}_{1}^{R} \\
& E^{H}= \\
& \quad \frac{1}{2} \int \frac{n_{T}(\mathbf{r}) n_{T}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{2}\left(n_{T}\right)\left(n_{T}\right) \\
& \quad=\frac{1}{2}\left(\tilde{n}_{T}\right)\left(\tilde{n}_{T}\right)+\left(n_{T 1}-\tilde{n}_{T 1}\right)\left(\widetilde{n}_{T}\right)+\frac{1}{2}\left(n_{T 1}-\tilde{n}_{T 1}\right)\left(n_{T 1}-\tilde{n}_{T 1}\right) \tag{1}
\end{align*}
$$

Approximation: in (2), \tilde{n}_{T} is replaced by $\tilde{n}_{T 1} \quad$ (basis completeness is assumed) Hartree energy becomes: $\quad E^{H}=\frac{1}{2}\left(\tilde{n}_{T}\right)\left(\tilde{n}_{T}\right)-\frac{1}{2}\left(\tilde{n}_{T 1}\right)\left(\tilde{n}_{T 1}\right)+\frac{1}{2}\left(n_{T 1}\right)\left(n_{T 1}\right)$

$$
E^{H}=\tilde{E}^{H}-\tilde{E}_{1}^{H}+E_{1}^{H}=\tilde{E}^{H}(\tilde{n}+\hat{n})+\sum_{\mathbf{R}}\left(-\tilde{E}_{1}^{H}\left(\tilde{n}_{1}^{R}+\hat{n}\right)+E_{1}^{H}\left(n_{1}^{R}\right)\right)
$$

PAW HAMILTONIAN - DETAILS

$$
\tilde{\mathrm{H}}=\frac{\mathrm{d} E}{\mathrm{~d} \tilde{\rho}}=-\frac{1}{2} \Delta+\tilde{v}_{H x c}+\sum_{i, j}\left|\tilde{p}_{i}^{R}\right\rangle D_{i j}^{R}\left\langle\tilde{p}_{j}^{R}\right|
$$

$D_{i j}^{R}$ is the expression of \mathbf{H} in the partial wave basis:

$$
D_{i j}^{R}=\left\langle\phi_{i}^{R}\right|-1 / 2 \Delta+v_{H x c}\left(n_{1}^{R} ; n_{c}\right)\left|\phi_{i}^{R}\right\rangle-\left\langle\tilde{\phi}_{j}^{R}\right|-1 / 2 \Delta+\tilde{v}_{H x c}\left(\tilde{n}_{1}^{R} ; \tilde{n}_{c}\right)\left|\tilde{\phi}_{j}^{R}\right\rangle
$$

Example of a formal calculation:

$$
\begin{aligned}
& \left\langle\phi_{i} \mid v_{H}\left(n^{1}\right) \phi_{j}\right\rangle=\iint_{R} \phi_{i}^{*}(\mathrm{r}) \frac{n^{1}\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \phi_{j}\left(\mathrm{r}^{\prime}\right) d r d \mathrm{r}^{\prime} \\
& =\iint_{R} \frac{\phi_{i}(r)}{r} S_{l, m_{i}}(\hat{r})\left(\sum_{i j^{\prime}} \rho_{i j^{\prime} j^{\prime}} \frac{\phi_{i}\left(r^{\prime}\right)}{r^{\prime}} S_{l, m_{i}}\left(\hat{r}^{\prime}\right) \frac{\phi_{j}\left(r^{\prime}\right)}{r^{\prime}} S_{l, m_{j}}\left(\hat{r}^{\prime}\right)\left(\sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4 \pi}{2 l+1} \frac{r_{l}^{l}}{r_{l}^{l+1}} S_{l m}(\hat{r}) S_{l m}\left(\hat{r}^{\prime}\right)\right) \frac{\phi_{j}(r)}{r} S_{l, m_{j}}(\hat{r}) r^{2} d r d \Omega r^{\prime 2} d r^{\prime} d \Omega^{\prime}\right. \\
& =\sum_{l} \sum_{m} \sum_{i^{\prime} j^{\prime}} \rho_{i^{\prime} j} R G_{l l_{l}, l_{l} m_{j}}^{l m} R G_{l_{l, m_{i}, l_{j} m_{j}}^{l m}}^{l, l_{l, l}, l_{i, l}, l_{j}} \\
& \text { with } \quad V_{l_{i, l}, l_{i}, l_{i}, l_{j}}^{l}=\int_{0}^{R} \int_{0}^{R} \frac{4 \pi}{2 l+1} \phi_{l_{i}}(r) \phi_{l_{j}}(r) \phi_{l_{i}}\left(r^{\prime}\right) \phi_{l_{j}}\left(r^{\prime}\right) \frac{r_{l}^{l}}{r_{>}^{l+1}} d r d r^{\prime}
\end{aligned}
$$

cea
 PAW HAMILTONIAN - DETAILS

This leads to:

$$
\begin{array}{r}
D_{i j}=D_{i j}^{0}+\sum_{k l} \rho_{k l} E_{i j k l}+D_{i j}^{x c}+\sum_{L} \int \tilde{v}_{e f f}(\mathbf{r}) \hat{Q}_{i j}^{L}(\mathbf{r}) d \mathbf{r} \\
\text { atomic } \quad \text { Hartree } \begin{array}{c}
\text { Exchange- } \\
\text { correlation }
\end{array} \\
\text { charge } \\
\text { compensation }
\end{array}
$$

$\widetilde{v}_{e f f}(\mathrm{r})$ is a "local" potential:

$$
\tilde{v}_{e f f}=v_{H} \underset{\text { Nucleus+electrons }}{\left[\tilde{n}+\hat{n}+\tilde{n}_{Z c}\right]}+v_{x c}\left[\underset{\text { Electrons }}{\left[\tilde{n}+\tilde{n}_{c}\right]}\right.
$$

$$
\tilde{\mathrm{H}}=\frac{\mathrm{d} E}{\mathrm{~d} \tilde{\rho}}=-\frac{1}{2} \Delta+\tilde{v}_{\text {eff }}+\sum_{i, j}\left|\tilde{p}_{i}^{R}\right\rangle D_{i j}^{R}\left\langle\tilde{p}_{j}^{R}\right|
$$

PAW HAMILTONIAN - ON-SITE XC POTENTIAL

All on-site quantities, including potentials,
can be expanded over "real spherical harmonics": $\quad n_{1}(r, \theta, \varphi)=\sum_{L M} n_{L M}(r) S_{L M}(\theta, \varphi)$

In the case of the XC potential, it is possible to use a Taylor series around the spherical density:

This is a very good approximation
This is computationally efficient

$$
\begin{array}{cc}
v_{x c}(r, \theta, \varphi)=\sum_{L M} v_{L M}^{x c}(r) Y_{L M}(\theta, \varphi)=v_{x c}\left[n_{0}(\vec{r})\right]+\left[n(\vec{r})-n_{0}(\vec{r})\right] \frac{d v_{x c}}{d n}\left[n_{0}\right]+\frac{\left[n(\vec{r})-n_{0}(\vec{r})\right]^{2}}{2} \frac{d^{2} v_{x c}}{d n^{2}}\left[n_{0}\right] \\
\begin{array}{c}
\text { Direct computation } \\
\text { on spherical grid } \\
\text { Accurate }
\end{array} & \text { OR }
\end{array}
$$

- A « coarse»FFT grid is used to represent PS wave-functions

■ The compensation charge is needed on the FFT grid (regular grid) and on the grid used to describe augmentation regions (radial grid)

- For accuracy, an auxiliary fine FFT grid is used to compute densities and potentials

If only the «coarse» FFT grid is used, not enough points are in augmentation regions

« Double FFT » technique used to transfer densities/potentials between grids:

$$
\tilde{n}_{\text {coarse }}(\vec{r}) \xrightarrow{F F T} \tilde{n}_{\text {coarse }}(\vec{G}) \longrightarrow \tilde{n}_{\text {fine }}(\vec{G}) \xrightarrow{F F T} \tilde{n}_{\text {fine }}(\vec{r})
$$

PAW VS PSEUDOPOTENTIALS

$$
\tilde{\mathrm{H}}=\frac{\mathrm{d} E}{\mathrm{~d} \tilde{\rho}}=-\frac{1}{2} \Delta+\tilde{v}_{e f f}+\sum_{i, j}\left|\tilde{p}_{i}^{R}\right\rangle D_{i j}^{R}\left\langle\tilde{p}_{j}^{R}\right| \quad D_{i j}=D_{i j}^{0}+\sum_{k l} \rho_{k l} E_{i j k l}+D_{i j}^{x c}+\sum_{L} \int \tilde{v}_{e f f}(\mathbf{r}) \hat{Q}_{i j}^{L}(\mathbf{r}) d \mathbf{r}
$$

- From PAW to ultrasoft pseudo-potentials

Linearisation of $\rho_{i j}$ around atomic occupations in the spheres
in the total energy expression leads to:

$$
D_{i j}=D_{i j}^{0, U S}+\sum_{L} \int \tilde{v}_{\text {eff }}(\mathrm{r}) \hat{Q}_{i, j}^{L}(\mathrm{r}) d \mathrm{r} \quad \begin{aligned}
& \text { Ultrasoft pseudopotential } \\
& \text { formulation }
\end{aligned}
$$

- From PAW to norm-conserving pseudo-potentials

The norm of partial waves is equal to the norm of pseudo partial waves

$$
\hat{Q}_{i, j}^{L}(r)=0
$$

$$
D_{i j}=D_{i j}^{0, K B}
$$

Norm-conserving pseudopotential formulation

PAW IN DEEP

More about PAW

DERIVATIVES OF ENERGY

Hellmann-Feynman theorem
First derivative of energy

$$
\frac{d E}{d \lambda}=\left.\sum_{n} f_{n}\left\langle\psi_{n}\right| \frac{\partial \tilde{H}}{\partial \lambda}\right|_{V_{H t c}^{(0)}}\left|\psi_{n}\right\rangle
$$

contribution is self-consistent (depends on VHxc)

DERIVATIVES OF E - CHAINS OF DEPENDENCIES

cea
 FORCES AND STRESS TENSOR

$$
\begin{aligned}
\mathrm{F}_{\mathrm{R}}= & -\int(\tilde{n}+\hat{n})(\mathrm{r}) \frac{\partial v_{H}\left(\tilde{n}_{z c}\right)}{\partial \mathrm{R}} d \mathrm{r}-\int v_{x c}\left[\tilde{n}+\tilde{n}_{c}\right] \frac{\partial \tilde{n}_{c}}{\partial \mathrm{R}} d \mathrm{r} \\
& -\sum_{R, i, j, L} \rho_{i j}^{R} \int \tilde{\nu}_{e f f}(\mathrm{r}) \frac{\partial \hat{Q}_{i j}^{L}}{\partial \mathrm{R}} d \mathrm{r}-\sum_{R, i, j} \sum_{n}\left\langle\tilde{\psi}_{n}\right| \frac{\partial\left(D_{i j}^{R}-\varepsilon_{n} S_{i j}^{R}\right.}{\partial \mathrm{R}}\left|\tilde{\psi}_{n}\right\rangle \\
\sigma_{\alpha \beta}=\frac{1}{\Omega} \frac{\partial E}{\partial \varepsilon_{\alpha \beta}}= & \sigma^{K i n}+\sigma^{E w a l d}+\sigma^{H x c}\left(\tilde{n}+\hat{n} ; \tilde{n}_{c}\right)+\frac{1}{\Omega} \int(\tilde{n}+\hat{n})(\mathrm{r}) \frac{\partial v_{H}\left(\tilde{n}_{z c}\right)}{\partial \varepsilon_{\alpha \beta}} d \mathrm{r} \\
& +\frac{1}{\Omega} \delta_{\alpha \beta} \int v_{x c}\left[\tilde{n}+\tilde{n}_{c}\right] \tilde{n}_{c} d \mathrm{r}+\frac{1}{\Omega} \int v_{x c}\left[\tilde{n}+\tilde{n}_{c}\right] \frac{\partial \tilde{n}_{c}}{\partial \varepsilon_{\alpha \beta}} d \mathrm{r} \\
& +\frac{1}{\Omega} \delta_{\alpha \beta} \int \tilde{v}_{e f f}(\mathrm{r}) \hat{n}(\mathrm{r}) d \mathrm{r}+\frac{1}{\Omega} \sum_{R, i, j, L} \rho_{i j}^{R} \int \tilde{v}_{e f f}(\mathrm{r}) \frac{\partial \hat{Q}_{i j}^{L}}{\partial \varepsilon_{\alpha \beta}} d \mathrm{r} \\
& +\frac{1}{\Omega} \sum_{R, i, j} \sum_{n}\left\langle\tilde{\psi}_{n}\right| \frac{\partial\left(D_{i j}^{R}-\varepsilon_{n} S_{i j}^{R}\right.}{\partial \varepsilon_{\alpha \beta}}\left|\tilde{\psi}_{n}\right\rangle
\end{aligned}
$$

DERIVATIVES OF ENERGY OF HIGHER LEVEL

We need the Density-Functional Perturbation Theory

- $2 \mathrm{n}+1$ theorem (Gonze et al, 1995)

$$
E^{(i)}=\frac{1}{i!}\left(\frac{d^{i}}{d \lambda^{i}} E\right)_{\lambda=0}
$$

$$
\begin{aligned}
& E^{(2 n+1)}=\left(E\left[\sum_{i=0}^{n} \lambda^{i} \psi_{m}^{(i)}, \lambda\right]\right)^{(2 n+1)} \text { Non variational } \\
& E^{(2 n)}=\min _{\psi_{m, \text { mirial }}^{(n)}}\left(E\left[\sum_{i=0}^{n-1} \lambda^{i} \psi_{m}^{(i)}+\lambda^{n} \psi_{m, \text { trial }}^{(n)}, \lambda\right]\right)^{(2 n)} \quad \text { Variational }
\end{aligned}
$$

- Sternheimer equation gives first-order wave function (new terms appear for PAW)

$$
P_{c}^{*}\left(\tilde{H}^{(0)}-\varepsilon_{n}^{(0)} S^{(0)}\right) P_{c}\left|\tilde{\psi}_{n}^{(1)}\right\rangle=-P_{c}^{*}\left(\tilde{H}^{(1)}-\varepsilon_{n}^{(0)} S^{(1)}\right)\left|\tilde{\psi}_{n}^{(0)}\right\rangle
$$

DERIVATIVES OF ENERGY OF HIGHER LEVEL

Just an idea of the complexity of DFPT formula
$2^{\text {nd }}$ derivative of non-local energy with respect to
displacements of atom a in α and β directions

$$
\chi_{\alpha \beta}^{a}=\sum_{i j}\left\{\begin{array}{l}
\sum_{n}\left(D_{i j}^{K V}-\varepsilon_{n} s_{i j}\right) \frac{\left.\partial^{2}\left(\left\langle\tilde{\psi}_{n} \mid \tilde{p}_{i}\right\rangle\left\langle\tilde{p}_{j}\right| \tilde{\psi}_{n}\right)\right)}{\partial R_{\alpha}^{a} \partial R_{\beta}^{a}} \\
+\sum_{L} q_{i j}^{L} \rho_{i j} \int_{R^{L} L}\left[\tilde{v}_{e f f} \frac{\partial^{2}\left(g_{L} Y_{L}\right)}{\partial r_{\alpha} \partial r_{\beta}}+\frac{\partial v_{H}\left(\tilde{n}_{Z C}\right)}{\partial r_{\alpha}} \frac{\partial\left(g_{L} Y_{L}\right)}{\partial r_{\beta}}+\frac{\partial v_{H}\left(\tilde{n}_{Z C}\right)}{\partial r_{\beta}} \frac{\partial\left(g_{L} Y_{L}\right)}{\partial r_{\alpha}}\right] d \mathbf{r} \\
-\sum_{L} q_{i j}^{L} \frac{\partial \rho_{i j}}{\partial R_{\alpha}^{a}} \int_{R^{R} L}\left[\frac{\partial v_{H}\left(\tilde{n}_{z C}\right)}{\partial r_{\beta}} g_{L} Y_{L}+\tilde{v}_{e f f} \frac{\partial\left(g_{L} Y_{L}\right)}{\partial r_{\beta}}\right] d \mathbf{r} \\
-\sum_{L} q_{i j}^{L} \frac{\partial \rho_{i j}}{\partial R_{\beta}^{a}} \int_{R^{2} L}^{\left[\frac{\partial v_{H}\left(\tilde{n}_{Z C}\right)}{\partial r_{\alpha}} g_{L} Y_{L}+\tilde{v}_{\text {eff }} \frac{\partial\left(g_{L} Y_{L}\right)}{\partial r_{\alpha}}\right] d \mathbf{r}}
\end{array}\right\}
$$

In grey: norm-conserving

LOCAL PAW TRANSFORMATION

APPROXIMATION 1

The plane-wave and the partial wave basis are complete

= zero
inside augmentation regions

APPROXIMATION 2
The main part of the density is contained inside PAW augmentation regions

$$
\left|\tilde{\psi}_{n}\right\rangle-\sum_{i, R}\left|\widetilde{\phi}_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle=\begin{array}{llll}
-\frac{1}{l} & 1 & &
\end{array}
$$

LOCAL PAW TRANSFORMATION

If the two previous approximations are valid, the PAW transformation

$$
\left|\psi_{n}\right\rangle=\boldsymbol{\tau}\left|\tilde{\psi}_{n}\right\rangle=\left|\tilde{\psi}_{n}\right\rangle+\sum_{i, R}\left|\phi_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle-\sum_{i, R}\left|\tilde{\phi}_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

Reduces to

$$
\left|\psi_{n}\right\rangle=\boldsymbol{\tau}\left|\tilde{\psi}_{n}\right\rangle \approx \sum_{i, R}\left|\phi_{i}^{R}\right\rangle\left\langle\tilde{p}_{i}^{R} \mid \tilde{\psi}_{n}\right\rangle
$$

"Local PAW transformation "

LOCAL PAW TRANSFORMATION

■ When is it valid?
When the plane-wave cut-off energy is large enough
When the partial wave basis contains enough elements
When the radius of augmentation regions is large enough
When the electronic density is localized around the nuclei

■ Typical application
Any properties applying to "correlated electrons"
Used in ABINIT for LDA+U, for local hybrid XC functionals, ..

LOCAL PAW TRANSFORMATION

Specific expression for the Hamiltonian

- When the local PAW transformation is valid, any new contribution to the Hamiltonian applies only in "on-site" contributions:

$$
\begin{gathered}
\tilde{\mathrm{H}}=-\frac{1}{2} \Delta+\tilde{\nu}_{e f f}+\sum_{i, j}\left|\tilde{p}_{i}^{R}\right\rangle\left(D_{i j}+\Delta D_{i j}\right)\left\langle\tilde{p}_{j}^{R}\right| \\
D_{i j}^{U}=\left\langle\phi_{i}^{R}\right| \Delta \mathbf{H}^{U}\left|\phi_{i}^{R}\right\rangle
\end{gathered}
$$

■ Easy to implement!
No need of specific "PAW datasets"

PAW: ADVANCED APPLICATION

An example needing the accuracy of PAW

$$
\begin{aligned}
& V_{\alpha \beta}(\mathbf{R}, n)=\frac{\partial^{2}}{\partial x_{\alpha} \partial x_{\beta}} \int \frac{n(\mathbf{r})}{|\mathbf{r}-\mathbf{R}|} d \mathbf{r} \\
& n(\mathbf{r})=n_{Z}(\mathbf{r})+n_{c}(\mathbf{r})+\tilde{n}(\mathbf{r}) \\
& \quad+\sum_{R}\left(n_{1}^{R}(\mathbf{r})-\tilde{n}_{1}^{R}(\mathbf{r})\right) \\
& \begin{array}{l}
V_{\alpha \beta}(\mathbf{R}, n)
\end{array} \\
& \quad+V_{\alpha \beta}\left(\mathbf{R}, n_{Z}+n_{c}\right)+V_{\alpha \beta}(\mathbf{R}, \tilde{n}) \\
&
\end{aligned}
$$

Mandatory to get correct results

Table 1. Quadrupole couplings and asymmetries for a variety of structures, obtained by ab initio calculations and comparison with experiment (see references for experimental details).

Sample	Nucleus	$C_{\mathrm{Q}}(\mathrm{MHz})$	η	$C_{\text {Qexp }}(\mathrm{MHz})$	$\eta_{\text {exp }}$
Ti metal	${ }^{47} \mathrm{Ti}$	9.375	0.0	$11.46[18]$	0.0
Zn metal	${ }^{67} \mathrm{Zn}$	12.514	0.0	$12.34[19]$	0.0
CdI_{2}	${ }^{127} \mathrm{I}$	91.656	0.0	$97.6[20]$	0.0
LiNbO_{3}	${ }^{7} \mathrm{Li}$	0.060	0.0		
	${ }^{17} \mathrm{O}$	1.669	0.81		
	${ }^{93} \mathrm{Nb}$	20.175	0.0	$22.1[21]$	
SiO_{2} (quartz)	${ }^{17} \mathrm{O}$	5.278	0.210	$5.19[5]$	0.19
SiO_{2} (stishovite)		6.511	0.119	$6.5 \pm 0.1[22]$	0.13 ± 0.05
SiO_{2} (low cristobalite)		5.235	0.147	$5.3 \pm 0.1[22]$	0.125 ± 0.005

Table 2. EFGs in atomic units for atomic ions in the presence of an imposed external quadrupole electric field of 0.008 atomic units. The EFGs were computed with DFT using the PBE exchange and correlation functional [12] using the Sadlej pVTZ basis.

Ion	$V_{z z}$ (atomic units)	Error, rigid core (\%)	Core-valence gap (atomic units)
F^{-}	-0.430		23.2
$\mathrm{~F}^{7+}$	0.000	0.00%	6.29
Cl^{-}	-1.867	0.00%	
Cl^{7+}	-3.681	1.49%	1.77
Br	-0.055	1.20%	1.33
Br^{7+}	-10.921		
I^{-}	-0.142		
I^{7+}			

