Magnetism

Eric Bousquet

University of Liège

eric.bousquet@ulg.ac.be

Abinit School, Lyon, France 16/05/2014

Outline

• Origin of magnetism:

- Inside an atom
- Between 2 atoms
- Interaction with ligands
- Interaction through ligands
- Spin orientation
- Collinear magnetism in DFT
- Non-collinear magnetism in DFT
- Finite magnetic field
- Constrained magnetic moments

Origin of magnetism

(Semi) Classical picture: Bohr atom model (L) + electron spin S

Spin and Orbital contributions to the magnetization:

$$M = (2\langle S \rangle + \langle L \rangle) \mu_B \qquad \qquad \mu_B = \frac{\hbar e}{2mc}$$

In most cases $\langle S \rangle >> \langle L \rangle \longmapsto$ magnetism comes from the spins:

$$M \simeq 2 \langle S \rangle \mu_B$$

Origin of magnetism: Inside an atom

2 electrons with the same *I* but different m_I (says, Φ_a and Φ_b orbitals):

$$H = H_1 + H_2 + H_{12} \qquad \qquad H_{12} = -\frac{e^2}{4\pi\varepsilon_0 r_{12}}$$

and: $\langle \phi_a(r_i)|H_i|\phi_a(r_i)\rangle = E_1$, $\langle \phi_b(r_i)|H_i|\phi_b(r_i)\rangle = E_2$, $\langle \phi_i|\phi_j\rangle = \delta_{ij}$ Each electron can have spin up and down states $\mapsto 4$ spin-orbitals:

 $\left|\uparrow\uparrow\right\rangle \quad \left|\uparrow\downarrow\right\rangle \quad \left|\downarrow\uparrow\right\rangle \quad \left|\downarrow\downarrow\right\rangle$

Such as we have:

$$H = E_1 + E_2 + \begin{pmatrix} K_{ab} - J_{ab} & 0 & 0 & 0 \\ 0 & K_{ab} & -J_{ab} & 0 \\ 0 & -J_{ab} & K_{ab} & 0 \\ 0 & 0 & 0 & K_{ab} - J_{ab} \end{pmatrix}$$

Origin of magnetism: Inside an atom

The diagonalization gives a triplet (FM) and a singlet (AFM) states:

where we have the Coulomb and Exchange integrals:

$$\begin{aligned} \mathcal{K}_{ab} &= \frac{e^2}{4\pi\varepsilon_0} \int d^3 r_1 \int d^3 r_2 \frac{|\phi_a(r_1)|^2 |\phi_b(r_2)|^2}{|r_{12}|} \ (=U) \\ \mathcal{J}_{ab} &= \frac{e^2}{4\pi\varepsilon_0} \int d^3 r_1 \int d^3 r_2 \frac{\phi_a^*(r_1)\phi_b(r_1)\phi_b^*(r_2)\phi_a(r_2)}{|r_{12}|} \end{aligned}$$

The Hamiltonian can be re-written in the Heisenberg form:

$$H = constant - 2J_{ab}\mathbf{S}_1 \cdot \mathbf{S}_2$$

To have $\langle S \rangle \neq 0$ one needs partially field orbitals ex: d^n orbitals

Hund's rules

Most of the crystals are magnetic because they contain Transition-Metal and Rare Earth atoms (*d* and *f* electrons)

Origin of magnetism: Between two atoms

The FM state is lower in energy in an atom (Hund's rules). But in H_2 molecule:

Similar Heisenberg Hamiltonian: $H = constant - 2J_{ab}\mathbf{S}_1 \cdot \mathbf{S}_2$ but with the 1*s* orbital overlap between the 2 atoms: J < 0The singlet AFM state is lower in energy!

Origin of magnetism: Between two atoms

The hopping process reinforce the AFM state:

Origin of magnetism: Interaction with ligands

Atom in a solid: Crystal Field Splitting

Atomic d (or f) orbitals splitted due to the surrounding atoms. Hund's rules still apply.

Origin of magnetism: Interaction with ligands

High-spin and low-spin configurations:

Depending on the size of Δ_{CF} relative to *U*.

Origin of magnetism: Interaction with ligands

Be aware of the Jahn-Teller effect:

from Stöhr and Siegmann, Magnetism, Springer 2006

Very strong in Mn^{3+} (d^4), Cr^{2+} (d^4), Cu^{2+} (d^9)

Origin of magnetism: Interaction through ligands

Atoms interacting through the ligands: Superexchange

from Stöhr and Siegmann, Magnetism, Springer 2006

Heisenberg picture still holds (localised electrons, $t \ll 3$): $H = JS_1S_2$

Origin of magnetism: Interaction through ligands

SE depends on the bonding: Goodenough-Kanamori rules

AFM superexchange paths

FM superexchange paths

Eric Bousquet

Origin of magnetism: Spin orientation

2nd order Heisenberg model for localised magnetic moments:

$$H = -2 \left[J \mathbf{S} \cdot \mathbf{S}' + \mathbf{D} \cdot (\mathbf{S} \times \mathbf{S}') + \mathbf{S} \cdot \mathbf{\Phi} \cdot \mathbf{S}' \right]$$

- $J \mapsto$ Superexchange interaction (favors $S \parallel S'$)
- **D** \mapsto Dzyaloshinsky-Moriya interaction (favors $S \perp S'$)
- $\Phi \mapsto$ Single Ion Anisotropy (easy/hard spin orientation)

One wants to estimate J, D and Φ from DFT!

see for ex: PRB 84, p.224429 (2011), PRB 86, 094413 (2012)

DFT based on the charge density $\rho(r)$

To enlarge DFT to (collinear) magnetism, decomposition of the density:

$$ho=
ho(\uparrow)+
ho(\downarrow)$$

The Hohenberg and Kohn theorem generalizes with an energy functional:

$$E = E\left[
ho(\uparrow),
ho(\downarrow)
ight]$$

With 2 Kohn-Sham equations to be solved, one for each spin-channel σ :

$$(T + V_{Ri}(r) + V_H(r) + V_{xc,\sigma})\phi_{i\sigma}(r) = \varepsilon_{i\sigma}(r)$$

with

$$V_{xc,\sigma} = \frac{\delta E_{xc}[\rho(\uparrow),\rho(\downarrow)]}{\delta \rho_{\sigma}(r)}$$

Then minimizing the K-S equations we get the ground state with:

 $ho=
ho(\uparrow)+
ho(\downarrow)$ and magnetization $m=
ho(\uparrow)ho(\downarrow)$

Supposing the magnetic moments are localised around the atoms (this is often the case for *d* and *f* electrons), one can compute magnetization on each atom (*prtdensph* input flag in ABINIT):

Integrated total density in atomic spheres:								
	Cohoro rodiua	Tategrated up density	 Interneted de descitu	Totol (untdn)	Diff(up dp)			
ALOM 1	apriere radrus	integrated_up_density	Integrated_dn_density	12 2200266	2 (E7//01			
2	1 71226	0.3307420	4.0012937	12 2200300	2 4574491			
2	1 /1100	4.0012931	0.330/420	E 7020079	-3.4574491			
3	1.41192	2.0400440	2.8500529	5.7032976	-0.0100080			
4	1.41192	2.8466448	2.8566529	5.7032978	-0.0100080			
5	1.41192	2.8566529	2.8466448	5.7032978	0.0100080			
6	1.41192	2.8566529	2.8466448	5.7032978	0.0100080			

(FeF₂ example)

Superexchange constants *J* can be estimated. Ex: Rock-Salt oxides

One needs to compute the energy for ferro and antiferro in order to extract J_1 and J_2 from:

$$E = E_0 + S\sum_i J_i S_i$$

see for ex: PRB 84, p.224429 (2011), PRB 86 86, 094413 (2012)

Wave functions are described by spinors:

$$\phi_i(r) = \left(egin{array}{c} \phi_{i\uparrow} \ \phi_{i\downarrow} \end{array}
ight)$$

Such as the density is a 2×2 matrix:

$$\rho = \begin{pmatrix} \rho^{\uparrow\uparrow} & \rho^{\uparrow\downarrow} \\ \rho^{\downarrow\uparrow} & \rho^{\downarrow\downarrow} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} n+m_z & m_x-im_y \\ m_x+im_y & n-m_z \end{pmatrix}$$

with *n* the electron density and m_i the magnetization density along the direction *i*

$$n(r) = \frac{1}{2} \operatorname{Tr} \rho(r) = \sum_{\alpha} \rho^{\alpha \alpha}(r) \qquad \qquad \mathbf{m}(\mathbf{r}) = \sum_{\alpha \beta} \rho^{\alpha \beta}(\mathbf{r}) \cdot \sigma_{\alpha \beta}$$

with the Pauli matrices $\sigma_{\alpha\beta} = (\sigma_x, \sigma_y, \sigma_z)$:

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Kohn-Sham equations with spinors:

$$\sum_eta H^{lphaeta} |\phi_i^eta
angle = arepsilon_i |\phi_i^lpha
angle$$

where the Hamiltonian is a 2×2 matrix:

$$\mathcal{H}^{lphaeta} = T\delta_{lphaeta} + V(r)\delta_{lphaeta} + \int rac{n(r')}{r-r'}dr'\delta_{lphaeta} + V^{lphaeta}_{xc}(r)$$

and:

$$V_{xc}^{\alpha\beta}(r) = \frac{\delta E_{xc}[\rho(r)]}{\delta \rho^{\alpha\beta}(r)}$$

 $\rho^{\alpha\beta}$ is diagonal when $m = m_z \mapsto$ collinear case.

However one needs Spin-Orbit coupling in order to couple directions (space rotations) to the spins.

Spin-Orbit coupling:

$$H = H_{KS} + \lambda(r)\mathbf{L} \cdot \mathbf{S} = H_{KS} + \frac{\hbar^2}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}$$

from Stöhr and Siegmann, Magnetism, Springer (2006)

Spin-Orbit coupling important for heavy elements:

Phonons of Pb, Phys. Rev. B 78, 045119 (2008):

Phonons of Bi, Phys. Rev. B 76, 104302 (2007):

Eric Bousquet

Magnetism in DFT

nsppol, nspinor and nspden input flags:

	nsppol	nspinor	nspden
Non-magnetic	1	1	1
Collinear FM	2	1	2
Collinear AFM	1	1	2
Non-Collinear	1	2	4

When the non-collinear flags are "on" the SOC coupling is switch on (controlled by *so_psp* or *pawspnorb* flags).

With SOC better not to use time-reversal symmetry (*kptopt* = 3 or 4).

Initialize *spinat* = (m_x, m_y, m_z) for each atom.

Magnetism in practice with Abinit

Ex: NiF₂

spinat = $(0,0,m) \mapsto$ no canting

spinat = (m,0,0) \mapsto canting along z

Applied magnetic field

Applying a (Zeeman) magnetic field on the spins gives (zeemanfield flag):

$$V_{H} = -\mu_{B}\mu_{0} \begin{pmatrix} H_{z} & H_{x} + iH_{y} \\ H_{x} - iH_{y} & -H_{z} \end{pmatrix}$$

Linear magnetoelectric tensor $\mathbf{P} = \alpha \mathbf{H}$

As well as non-linear responses!

Linear magnetoelectric response

Free energy of a crystal under *E* and *H* fields:

$$-F(E,H) = \ldots + \frac{1}{2}\varepsilon_0\varepsilon_{ij}E_iE_j + \frac{1}{2}\mu_0\mu_{ij}H_iH_j + \alpha_{ij}E_iH_j + \ldots$$

Polarization:

$$P_j = -\frac{\partial F(E,H)}{\partial E_j} = \ldots + \varepsilon_0 \varepsilon_{ij} E_i + \alpha_{ij} H_i + \ldots$$

Magnetization:

$$M_j = -\frac{\partial F(E,H)}{\partial H_j} = \ldots + \mu_0 \mu_{ij} H_i + \alpha_{ij} E_j + \ldots$$

 α = magnetoelectric tensor

Ex: Linear ME in Cr₂O₃

- Collinear AFM oxide
- First experimental evidence of linear ME effect: D. N. Astrov (1961)

Precision on energy/potential is crucial for P_{elec} (toldfe $\sim 10^{-12}$ Ha) Precision on forces is crucial for P_{ion} (toldmxf $\sim 10^{-7}$ Ha/Bohr)

Linear ME in Cr₂O₃

- Collinear AFM oxide
- First experimental evidence of linear ME effect: D. N. Astrov (1961)

PRL 106, p.107202 (2011)

Constrained magnetic moment calculations (β version)

Constrain the direction of the magnetic moments (magconon flag =1) :

Lagrange multiplier:
$$E = E_{\mathcal{KS}} + \sum_{i} \lambda \left[\mathbf{m}_{i} - \mathbf{m}_{i}^{0} (\mathbf{m}_{i}^{0} \cdot \mathbf{m}_{i}) \right]^{2}$$

Constrain the direction and the amplitude of the magnetic moments (magconon flag = 2):

$$E = E_{KS} + \sum_{i} \lambda \left[\mathbf{m}_{i} - \mathbf{m}_{i}^{0} \right]^{2}$$

with λ the strength of the Lagrange multiplier (*magcon_lambda* flag) and m_i^0 the desired magnetic moment on each atom *i* (given by *spinat*).

Constrained magnetic moment calculations (β version)

Useful to explore the spin energy landscape "by hand" (in case of multiple local minima of complex and flat energy landscapes):

And also to compute the magnetocrystaline anisotropy energy.

Ex: Effect of distortions on SIA and MCA in LaFeO₃

Octahedra distortions ($a^0 a^0 10^{+/-}$):

SIA in the xy plane with $a^0 a^0 10^-$ and along z axis for $a^0 a^0 10^+$

Effect of distortions on SIA and MCA in LaFeO₃

Octahedra distortions $(a^0a^010^-)$: SIA local easy axis follows octahedra

"Global" easy-axis = [110]

PRB 86, p.094413 (2012)

Conclusions

DFT + spins:

- Collinear magnetism: easy to handle
- Non-Collinear magnetism: often less easy
- Often DFT+U or Hybrid functionals are better for magnetic systems
- Allows to compute:
 - (Super) Exchange interaction between spins (*J*).
 - Spin canting / Dzyaloshinsky-Moriya interaction (D)
 - Magnetic anisotropy
 - Response under Zeeman field (magnetic and magnetoelectric susceptibilities)

Future/on-going works:

- Orbital magnetism: J. Zwanziger and X. Gonze Phys. Rev. B 84, 064445 (2011)
- Constrained moments, spin dispersion
- DFPT with Zeeman field
- o ...