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Origin of magnetism

(Semi) Classical picture: Bohr atom model (L) + electron spin S

Spin and Orbital contributions to the magnetization:

M = (2〈S〉+ 〈L〉) µB µB =
h̄e

2mc

In most cases 〈S〉>> 〈L〉 7−→ magnetism comes from the spins:

M ' 2〈S〉µB
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Origin of magnetism: Inside an atom

2 electrons with the same l but different ml (says, Φa and Φb orbitals):

H = H1 + H2 + H12 H12 =− e2

4πε0r12

and: 〈φa(ri )|Hi |φa(ri )〉= E1, 〈φb(ri )|Hi |φb(ri )〉= E2, 〈φi |φj〉= δij

Each electron can have spin up and down states 7−→ 4 spin-orbitals:

|↑↑〉 |↑↓〉 |↓↑〉 |↓↓〉

Such as we have:

H = E1 + E2 +


Kab−Jab 0 0 0

0 Kab −Jab 0
0 −Jab Kab 0
0 0 0 Kab−Jab
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Origin of magnetism: Inside an atom

The diagonalization gives a triplet (FM) and a singlet (AFM) states:

where we have the Coulomb and Exchange integrals:

Kab =
e2

4πε0

∫
d3r1

∫
d3r2

|φa(r1)|2|φb(r2)|2

|r12|
(= U)

Jab =
e2

4πε0

∫
d3r1

∫
d3r2

φ ∗a (r1)φb(r1)φ ∗b (r2)φa(r2)

|r12|

The Hamiltonian can be re-written in the Heisenberg form:

H = constant−2JabS1 ·S2
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Origin of magnetism: Inside an atom

To have 〈S〉 6= 0 one needs partially field orbitals ex: dn orbitals

Hund’s rules

Most of the crystals are magnetic because they contain Transition-Metal
and Rare Earth atoms (d and f electrons)
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Origin of magnetism: Between two atoms

The FM state is lower in energy in an atom (Hund’s rules).

But in H2 molecule:

Similar Heisenberg Hamiltonian: H = constant−2JabS1 ·S2

but with the 1s orbital overlap between the 2 atoms: J < 0

The singlet AFM state is lower in energy!
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Origin of magnetism: Between two atoms

The hopping process reinforce the AFM state:
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Origin of magnetism: Interaction with ligands

Atom in a solid: Crystal Field Splitting

Atomic d (or f ) orbitals splitted due to the surrounding atoms.

Hund’s rules still apply.
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Origin of magnetism: Interaction with ligands

High-spin and low-spin configurations:

Depending on the size of ∆CF relative to U.
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Origin of magnetism: Interaction with ligands
Be aware of the Jahn-Teller effect:

from Stöhr and Siegmann, Magnetism, Springer 2006

Very strong in Mn3+ (d4), Cr2+ (d4), Cu2+ (d9)
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Origin of magnetism: Interaction through ligands

Atoms interacting through the ligands: Superexchange

from Stöhr and Siegmann, Magnetism, Springer 2006

Heisenberg picture still holds (localised electrons, t <<): H = JS1S2
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Origin of magnetism: Interaction through ligands

SE depends on the bonding: Goodenough-Kanamori rules
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Origin of magnetism: Spin orientation

2nd order Heisenberg model for localised magnetic moments:

H =−2
[
JS ·S′+ D · (S×S′) + S ·Φ ·S′

]

J 7−→ Superexchange interaction (favors S ‖ S′)

D 7−→ Dzyaloshinsky-Moriya interaction (favors S ⊥ S′)

Φ 7−→ Single Ion Anisotropy (easy/hard spin orientation)

One wants to estimate J, D and Φ from DFT!

see for ex: PRB 84, p.224429 (2011), PRB 86, 094413 (2012)
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Magnetism in DFT: Collinear case

DFT based on the charge density ρ(r)

To enlarge DFT to (collinear) magnetism, decomposition of the density:

ρ = ρ(↑) + ρ(↓)

The Hohenberg and Kohn theorem generalizes with an energy functional:

E = E [ρ(↑),ρ(↓)]

With 2 Kohn-Sham equations to be solved, one for each spin-channel σ :

(T + VRi (r) + VH(r) + Vxc,σ )φiσ (r) = εiσ (r)

with
Vxc,σ =

δExc [ρ(↑),ρ(↓)]

δρσ (r)
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Magnetism in DFT: Collinear case

Then minimizing the K-S equations we get the ground state with:

ρ = ρ(↑) + ρ(↓) and magnetization m = ρ(↑)−ρ(↓)

Supposing the magnetic moments are localised around the atoms (this is
often the case for d and f electrons), one can compute magnetization on
each atom (prtdensph input flag in ABINIT):

Integrated total density in atomic spheres:
-------------------------------------------

Atom Sphere radius Integrated_up_density Integrated_dn_density Total(up+dn) Diff(up-dn)
1 1.71336 8.3387428 4.8812937 13.2200366 3.4574491
2 1.71336 4.8812937 8.3387428 13.2200366 -3.4574491
3 1.41192 2.8466448 2.8566529 5.7032978 -0.0100080
4 1.41192 2.8466448 2.8566529 5.7032978 -0.0100080
5 1.41192 2.8566529 2.8466448 5.7032978 0.0100080
6 1.41192 2.8566529 2.8466448 5.7032978 0.0100080

Note: Diff(up-dn) can be considered as a rough approximation of a local magnetic moment.

(FeF2 example)
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Magnetism in DFT: Collinear case

Superexchange constants J can be estimated. Ex: Rock-Salt oxides

One needs to compute the energy for ferro and antiferro in order to extract
J1 and J2 from:

E = E0 + S∑
i

JiSi

see for ex: PRB 84, p.224429 (2011), PRB 86 86, 094413 (2012)
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Magnetism in DFT: Non-collinear case

Wave functions are described by spinors:

φi (r) =

(
φi↑
φi↓

)
Such as the density is a 2×2 matrix:

ρ =

(
ρ↑↑ ρ↑↓

ρ↓↑ ρ↓↓

)
=

1
2

(
n + mz mx − imy

mx + imy n−mz

)
with n the electron density and mi the magnetization density along the
direction i

n(r) =
1
2

Trρ(r) = ∑
α

ρ
αα (r) m(r) = ∑

αβ

ρ
αβ (r) ·σαβ

with the Pauli matrices σαβ = (σx ,σy ,σz):

σx =

(
0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
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Magnetism in DFT: Non-collinear case

Kohn-Sham equations with spinors:

∑
β

Hαβ |φ β

i 〉= εi |φ α

i 〉

where the Hamiltonian is a 2×2 matrix:

Hαβ = T δαβ + V (r)δαβ +
∫ n(r ′)

r − r ′
dr ′δαβ + V αβ

xc (r)

and:

V αβ

xc (r) =
δExc [ρ(r)]

δραβ (r)

ραβ is diagonal when m = mz 7−→ collinear case.

However one needs Spin-Orbit coupling in order to couple directions
(space rotations) to the spins.
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Magnetism in DFT: Non-collinear case

Spin-Orbit coupling:

H = HKS + λ (r)L ·S = HKS +
h̄2

2m2c2
1
r

dV
dr

L ·S

from Stöhr and Siegmann, Magnetism, Springer (2006)
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Magnetism in DFT: Non-collinear case

Spin-Orbit coupling important for heavy elements:

Phonons of Pb, Phys. Rev. B 78, 045119 (2008):

Phonons of Bi, Phys. Rev. B 76, 104302 (2007):
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Magnetism in practice with Abinit

nsppol, nspinor and nspden input flags:

nsppol nspinor nspden

Non-magnetic 1 1 1

Collinear FM 2 1 2

Collinear AFM 1 1 2

Non-Collinear 1 2 4

When the non-collinear flags are "on” the SOC coupling is switch on
(controlled by so_psp or pawspnorb flags).

With SOC better not to use time-reversal symmetry (kptopt = 3 or 4).

Initialize spinat = (mx , my , mz ) for each atom.
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Magnetism in practice with Abinit

Ex: NiF2

spinat = (0,0,m) 7−→ no canting spinat = (m,0,0) 7−→ canting along z

prtdensph prtdensph
x_mag y_mag z_mag

-0.0000000 -0.0000000 1.4380590
0.0000000 -0.0000000 -1.4352794
0.0000000 0.0000000 -0.0517603

-0.0000000 -0.0000000 -0.0517603
-0.0000000 0.0000000 -0.0511159
0.0000000 -0.0000000 -0.0511159

x_mag y_mag z_mag
1.7778831 -0.0574651 0.1310639

-1.7772407 0.0151209 0.1503122
-0.0301506 -0.0004283 0.0071212
-0.0301502 -0.0004282 0.0071204
0.0302100 -0.0016721 0.0068381
0.0301953 -0.0016709 0.0068350
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Applied magnetic field

Applying a (Zeeman) magnetic field on the spins gives (zeemanfield flag):

VH =−µBµ0

(
Hz Hx + iHy

Hx − iHy −Hz

)

Allows to access to:
Linear magnetic susceptibility tensor Linear magnetoelectric tensor

M = χH P = αH

H

M

H

P

As well as non-linear responses!
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Linear magnetoelectric response

Free energy of a crystal under E and H fields:

−F (E ,H) = . . . +
1
2

ε0εijEiEj +
1
2

µ0µijHiHj + αijEiHj + . . .

Polarization:

Pj = −∂F (E ,H)

∂Ej
= . . . + ε0εijEi + αijHi + . . .

Magnetization:

Mj = −∂F (E ,H)

∂Hj
= . . . + µ0µijHi + αijEj + . . .

α = magnetoelectric tensor
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Ex: Linear ME in Cr2O3

Collinear AFM oxide
First experimental evidence of linear ME effect: D. N. Astrov (1961)
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Ptot (Berry Phase)

Pion (∑ Z ∗δion
Ω )

Pelec or clamped ion
(Berry Phase)

Precision on energy/potential is crucial for Pelec (toldfe ∼ 10−12 Ha )

Precision on forces is crucial for Pion (toldmxf ∼ 10−7 Ha/Bohr )
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Linear ME in Cr2O3

Collinear AFM oxide
First experimental evidence of linear ME effect: D. N. Astrov (1961)
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α
spin
tot = 1.45 ps.m−1

(αexp = 1−4 ps.m−1)

α
spin
ion = 1.1 ps.m−1

α
spin
elec = 0.34 ps.m−1

PRL 106, p.107202 (2011)
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Constrained magnetic moment calculations (βversion)

Constrain the direction of the magnetic moments (magconon flag =1) :

Lagrange multiplier: E = EKS +∑
i

λ

[
mi −m0

i (m0
i ·mi )

]2

Constrain the direction and the amplitude of the magnetic moments
(magconon flag =2) :

E = EKS +∑
i

λ

[
mi −m0

i

]2

with λ the strength of the Lagrange multiplier (magcon_lambda flag) and
m0

i the desired magnetic moment on each atom i (given by spinat).
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Constrained magnetic moment calculations (βversion)

Useful to explore the spin energy landscape "by hand" (in case of multiple
local minima of complex and flat energy landscapes):

And also to compute the magnetocrystaline anisotropy energy.
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Ex: Effect of distortions on SIA and MCA in LaFeO3

Octahedra distortions (a0a010+/−):
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SIA in the xy plane with a0a010− and along z axis for a0a010+
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Effect of distortions on SIA and MCA in LaFeO3

Octahedra distortions (a0a010−): SIA local easy axis follows octahedra
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“Global” easy-axis = [110]

PRB 86, p.094413 (2012)
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Conclusions

DFT + spins:

Collinear magnetism: easy to handle
Non-Collinear magnetism: often less easy
Often DFT+U or Hybrid functionals are better for magnetic systems
Allows to compute:

(Super) Exchange interaction between spins (J).

Spin canting / Dzyaloshinsky-Moriya interaction (D)

Magnetic anisotropy

Response under Zeeman field (magnetic and magnetoelectric
susceptibilities)

Future/on-going works:

Orbital magnetism: J. Zwanziger and X. Gonze Phys. Rev. B 84, 064445 (2011)

Constrained moments, spin dispersion
DFPT with Zeeman field
· · ·
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